Biosciences & Biotechnology
Protecting the nation by countering current and future biological and environmental threats
LLNL’s Biosciences & Biotechnology Division lies at the intersection of biological, physical, and engineering sciences. We apply an understanding of fundamental biology to predict and counter emerging biological and chemical threats and to solve problems in health and environmental security.
LLNL’s cutting-edge technologies, in combination with experimental and computational methods, help us solve important national problems in biosecurity, human health, and environmental biology. We perform fundamental and applied research in areas such as genomics, molecular toxicology, nanotechnology, host–pathogen biology, structural biology, genetics, microbial systems, and medical countermeasures. We employ world-class facilities and up-to-the-minute advances in the biosciences, physical sciences, nanotechnology, and imaging and measurement science to solve problems that matter.
Our multidisciplinary staff focus on integrating experimental and computational tools to understand complex cellular systems, testing and expanding our understanding of cellular mechanisms, and using our knowledge to provide solutions for countering current and emerging threats.
Explore this page to learn about the people, research, and resources that support our mission.
Learn more about bioscience and biotechnology research at LLNL
People
Research Groups
- Biochemical and Biophysical Systems
- Bionanomaterials
- Biosecurity and Bioforensics
- Environmental Biology
- Genomics
- Human Health Sciences
- Microbiology/Immunology
- Systems and Synthetic Biology
- Translational Immunology
Biochemical and Biophysical Systems
Group leader: Felice Lightstone
Scientists in the Biochemical and Biophysical Systems group use cutting-edge, multi-scale, in silico simulations to tackle problems in biology. We use a wide range of computational biology methods that employ LLNL’s high-performance computing resources to simulate systems from sub-atomic scale to population level. These methods include atomistic and coarse-grained molecular dynamics, quantum simulations, constraint-based genome-scale simulations, reaction-transport dynamic simulations, and agent-based, whole-organ, and pharmacokinetics/pharmacodynamics models.
We develop new computational methods to describe and predict biological systems. In addition, we combine experimental efforts with physics-based simulations and statistical and machine-learning models to accelerate the design and development of safe and effective therapeutics. Overall, we seek predictive understanding of protein-mediated processes related to critical missions of LLNL, including bioenergy, medical countermeasures, and new materials.
Learn more on our Biochemical and Biophysical Systems Group website.
Bionanomaterials
Group leader: Brent Segelke
The Bionanomaterials group conducts research at the nexus of biotechnology and nanoscience to support national biosecurity interests. We are a multidisciplinary team with expertise in physics, chemistry, materials science, and biology. Our unique, cross-cutting capabilities allow us to work together on basic and applied research furthering LLNLʼs mission to ensure global security. Bionanomaterials group members advance programs and technologies to enhance the nation’s defense, safeguard human health, and ensure economic resilience.
Our current research is focused on developing:
- Advanced bioanalytical and molecular imaging instrumentation for understanding structural and functional relationships of biomolecules and the subcellular molecular mechanisms of host-pathogen interactions.
- Novel detection methods for biological and chemical agents.
- Next-generation nanoporous materials that repel or neutralize chemical and biological agents and enable high performance molecular separations.
Learn more on our Bionanomaterials Group website.
Biosecurity and Bioforensics
Group leader: Wes Overton
The Biosecurity and Bioforensics group’s mission is to deliver intelligence-informed, science-based solutions to problems affecting human health and national security. We combine cutting-edge sequencing technologies and bioinformatic approaches to develop data-driven models of infection and medical countermeasures. Our current thrust areas are in bioremediation, metagenomic sequencing, bioinformatic analysis of naturally occurring communities, and advanced genetic engineering technologies such as CRISPR/Cas and how they affect cells and organisms. We work with various federal sponsors to deliver high-quality, science-based solutions to constantly evolving needs.
Learn more on our Biosecurity and Bioforensics Group website.
Environmental Biology
Group leader: Thomas Bunt
The Environmental Biology group develops and deploys high-impact operational capabilities to sample, characterize, and recover from biological events. Our diverse group includes expertise in environmental sampling, molecular biology, microbiology, ecology, clinical testing, antibody production, chemistry, and quality assurance. We strive to improve the time-to-results, efficiency, sensitivity, and specificity of operations used to mitigate biological threats.
Our research involves developing rapid viability methods for biological agents, fielding a clinical testing laboratory for COVID-19 response, deploying mobile biological laboratories for special event monitoring, and developing methods for detecting biothreats in complex environmental samples. Several members of our group are also applying their technical expertise to help with LLNL’s Life Extension Program (LEP) in the Strategic Deterrence Directorate.
Learn more on our Environmental Biology Group website.
Genomics
Group leader: Crystal Jaing
The Genomics group develops innovative bioassays to rapidly detect infectious agents and other pathogens to support public health, food safety, and drug safety. We apply expertise in genomics, bioinformatics, virology, and molecular biology to characterize pathogens, develop assays to detect microbial agents in the environment, identify novel biomarkers for diagnostics of infectious diseases, characterize unknown and emerging pathogens, and study the evolution and virulence mechanisms of key viral and bacterial threat agents.
Learn more on our Genomics Group website.
Human Health Sciences
Group leader: Heather Enright
The Human Health Sciences group conducts basic science and applied research on the mechanisms of action of the effects of chemicals and drugs in humans, how gene expression is regulated, and bone metabolism and fracture repair. We also focus on understanding the damage caused by radiation exposure, developing new technology for biosurveillance of outbreaks of infectious diseases, and accelerating the development of medical countermeasures. Our studies help us understand how people respond to drugs and chemicals, how they vary in their response, and how to prevent deleterious effects.
For an example of our vaccine development work, see the Cooperative Research Center for NanoScaffold-based Chlamydia trachomatis Vaccines webpage.
Learn more about our group on our Human Health Sciences Group website.
Microbiology/ Immunology
Group leader: Nicholas Be
The Microbiology/Immunology group is a diverse group of scientists with expertise in microbiology, virology, immunology, infectious disease pathogenesis, and microbiome science. We conduct research on host–pathogen interactions and microbial communities with a focus on biothreats and military medicine applications. Among our projects are studies of host immune responses during infection using a combination of in vitro and in vivo approaches, vaccine and therapeutic development, viral evolution and cross species transmission, and integration of assay design with simulations and machine learning.
Learn more about our group on the Microbiology/Immunology Group website.
Systems and Synthetic Biology
Group leader: Dan Park
The Systems and Synthetic Biology group designs proteins, microbes, and microbial communities for clean energy, manufacturing, agriculture, bioremediation, and human health. We use systems biology approaches to gain a predictive understanding of complex microbes/microbial communities and uncover foundational design rules that govern system level behavior. We employ synthetic biology approaches to redesign proteins and microbial pathways that sequester critical metals, resist mutational inactivation, and generate products of strategic importance. Using engineering and materials science principles, we translate fundamental science discoveries into platform technologies that benefit national security.
Learn more on our Systems and Synthetic Biology Group website.
Translational Immunology
Group leader: Matthew Coleman
The Translational Immunology group is a diverse group of scientists with expertise in immunobiology, cellular biology, biotechnology, and nanotechnology. We are conducting research on vaccine development and understanding inflammatory processes and diseases. Our group has developed novel nanotechnology tools for the synthesis and characterization of immunomodulatory proteins, nucleic acids, and small molecules with applications toward national biosecurity interests. Among our projects are studies of targeted immune responses using a combination of in-vitro and in-vivo approaches that focus on protein and nucleic acid vaccines, as well as small molecule immune modifiers.
For an example of our vaccine development work, see the Cooperative Research Center for NanoScaffold-based Chlamydia trachomatis Vaccines webpage.
Career Opportunities
You’ll find a highly collaborative environment at BBTD.
We’re always looking for talented scientists, especially in growth areas like computational biology, synthetic biology, neurobiology, and cellular biology. We’re known for research in genomics, bioanalytics, microbiology, infectious diseases, nanotechnology, and radiation biology.
At BBTD, you’ll work with experts across our diverse portfolio and have access to state-of-the-art facilities and innovative technologies. If you’re interested in joining our team, browse our open positions.
Capabilities & Facilities
Our researchers utilize world-class scientific capabilities and modern high-performance computing facilities to support Laboratory programs. Listed below are LLNL’s state-of-the-art capabilities commonly used by our scientists.
Accelerator Complex
Contact: Scott Anderson
LLNL’s accelerator complex houses sophisticated tools to accelerate charged particles to incredibly high speeds. Located three stories underground, these instruments allow our nuclear physicists to detect isotopes, create fast neutrons, peer inside heavily shielded objects, and characterize unknown material.
Additional information is available on the Accelerator Complex webpage.
Actinide Materials
Contact: Scott McCall
We support global and national security missions by maintaining capabilities to synthesize, characterize, and test materials containing actinides.
Animal Care Facility (ACF)
Contact: acf [at] lists.llnl.gov (ACF support)
The Association for Assessment and Accreditation of Laboratory Animals, International (AAALAC)-accredited and Public Health Service (PHS) Assured animal facility houses several thousand small animals, which are cared for by full-time Laboratory animal technologists. Animal models are used in comparative genomics studies that focus on understanding gene regulation and for vaccine and countermeasure development.
Earn practical research experience by working with mentors on a wide range of projects in geoscience, climate, and atmospheric science.
Learn more about our internship in atmospheric, earth, and energy science.
Autoradiography Imaging
Contact: Kim Knight
Sub-millimeter resolution alpha and beta radioactivity imaging
Center for Accelerator Mass Spectrometry (CAMS)
Contact: Nanette Sorensen or Scott Tumey
Researchers at CAMS use diverse analytical techniques and state-of-the-art instrumentation to develop and apply unique, ultra-sensitive isotope ratio measurement and ion beam analytical techniques.
Additional information is available on the CAMS website.
Center for Micro- and Nanotechnology (CMNT)
Contact: Engineering Directorate
Researchers at the CMNT invent, develop, and apply microscale and nanoscale technologies to support LLNL missions. The research and capabilities of the Center cover materials, devices, instruments, and systems that require microfabricated components, including microelectromechanical systems (MEMS), electronics, photonics, micro- and nanostructures, and micro- and nanoactuators.
Additional information is available on the Engineering website.
Center for National Security Applications of Nuclear Magnetic Resonance (NMR)
Contact: Derrick Kaseman
The NMR facility provides advanced characterization of chemical processes and materials using magnetically passed spectroscopic capabilities. The center houses multiple spectrometers used to analyze solids, liquids, and gases, including explosives, highly toxic industrial chemicals, and chemical and biological threat agents.
Develop and apply methods in computational materials science, computational chemistry, and other related areas of computational science.
Learn more about the CCMS internship.
Computational Nuclear Physics
Contact: Bret Beck
We measure, collect, and evaluate nuclear data and incorporate these data into libraries to be used in simulations. We provide nuclear data, physics simulation, and data processing tools for experimental and theoretical nuclear data.
Additional information is available on the Computational Nuclear Physics website.
Cooperative Research Center for NanoScaffold-based Chlamydia trachomatis Vaccines
Contact: Matthew Coleman
Leading experts in immunology and nanotechnology are developing and testing a new type of vaccine to prevent sexually transmitted infections caused by the Chlamydia trachomatis (Ct) pathogen.
Additional information is available on the Cooperative Research Center for NanoScaffold-based Chlamydia trachomatis Vaccines webpage.
Work on data science problems that matter to the nation while pursuing a degree in machine learning, statistics, applied mathematics, computer science, or similar fields.
Learn more about the Data Science Summer Institute.
Diamond Anvil Cell (DAC) and Ultrafast Science
Contact: Geoffrey Campbell
Our diamond anvil-based laboratories can measure materials properties at static pressures above 1 Mbar, providing essential equation-of-state information for weapons, experiment design, and further study of the chemistries that control unique material formation. Additional experiments to study shock compression with 10 picosecond time resolution are pushing the limits of current theories of the metal strength, phase transitions, and chemical kinetics.
Dynamic Transmission Electron Microscope (DTEM)
Contact: Geoffrey Campbell
The LLNL-developed DTEM enables direct observation of unique mechanical properties controlled by features at the nanoscale.
Additional information is available on the DTEM webpage.
Electron Beam Ion Trap (EBIT)
Contact: Greg Brown
An EBIT makes and traps very highly charged ions by means of a high-current density electron beam. The ions can be observed in the trap itself or extracted from the trap for external experiments. Our EBIT is the only ion source in the world that can create highly charged ions that are practically at rest, allowing us to study an otherwise inaccessible domain.
Additional information is available on the EBIT website.
Electron Microscopy
Contact: Kerri Blobaum
LLNL maintains state-of-the-art capabilities in scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to characterize materials.
Energetic Materials Center (EMC)
Contact: Lara Leininger
The EMC supports research and development for advanced conventional weapons, rocket and gun propellants, homeland security, demilitarization, and industrial applications of energetic materials. Our researchers, as part of the EMC, specialize in the modeling and experimentation surrounding the development, characterization, and effectiveness of high explosives.
Additional information is available on the EMC website.
Feedstocks for Additive Manufacturing
Contact: Yong Han
Our scientists and engineers optimize additive manufacturing (3D printing) techniques, such as direct-ink writing, through focused investments in feedstock development. Using computer programs to simulate particle size and scale, we develop new feedstock materials from combinations of polymers, composites, and ceramics, with applications ranging from weapon components to energy innovations.
Forensic Science Center (FSC)
Contact: Audrey Williams
FSC researchers analyze interdicted samples, provide radiological assistance 24/7, and engage in the critical research and development needs of the intelligence community. FSC expertise includes analytical chemistry, organic chemistry, inorganic chemistry, nuclear chemistry, and forensic instrument design and fabrication.
Additional information is available in the FSC Fact Sheet and on the FSC website.
Glenn T. Seaborg Institute
Contact: Mavrik Zavarin
The LLNL branch of the Glenn T. Seaborg Institute conducts collaborative research between LLNL and the academic community in radiochemistry and nuclear forensics, contributing to the education and training of undergraduate and graduate students, postdocs, and faculty in transactinium science.
Additional information is available on the Seaborg Institute website.
High Energy Density Science (HEDS) Center
Contact: Frank Graziani
The HEDS Center fosters collaborations with university faculty and students that have the potential to enhance high-energy-density science research. The HEDS Center facilitates access to LLNL’s HEDS experimental facilities and high-performance computing resources in order to support research important to the Department of Energy.
Additional information is available on the HEDS Center website.
Study matter at extreme conditions—such as those found inside stars or the cores of giant planets—using world-class laser facilities.
Learn more about the HEDS Center internship.
High Explosives Applications Facility (HEAF)
Contact: Lara Leininger
HEAF houses unique facilities for the synthesis, characterization, and testing of high explosives and other energetic materials. HEAF is also equipped with extensive, high-fidelity, high-speed diagnostic capabilities, including x-ray radiography, high-speed photography, laser velocimetry, and embedded particle velocity/pressure measurements.
Additional information is available on the HEAF webpage.
High-Performance Computing
Contact: lc-support [at] llnl.gov (LC support)
LLNL is home to a first-class computational infrastructure that supports the high-performance computing requirements of the Laboratory’s mission and research scientists. Livermore Computing provides the systems, tools, and expertise needed to enable discovery and innovation through simulations.
Additional information is available on the Livermore Computing Center website.
High-Performance Computing (HPC) Innovation Center
Contact: HPC Innovation Center
LLNL’s HPC Innovation Center connects companies with computational science and computer science experts, on demand, to help them solve their toughest challenges. It also provides cost-effective access to some of the world’s largest HPC systems and rapidly assembles expert teams to develop, prove, and deploy high-impact solutions across a broad range of industries and applications.
Additional information is available on the HPC Innovation Center website.
Joint Genome Institute (JGI)
Contact: Crystal Jaing
The JGI is a high-throughput genome sequencing and analysis facility dedicated to the genomics of nonmedical microbes, microbial communities, plants, fungi, and other targets relevant to DOE mission areas in clean energy generation, climate change, and environmental sciences. Scientists from the Genomics group support key missions of JGI by performing DNA sequencing experiments and sequencing data analysis utilizing unique molecular biology skills and state-of-the-art instrumentation.
Additional information is available on the JGI website.
Jupiter Laser Facility (JLF)
Contact: Félicie Albert
JLF is a unique laser user facility for research in high-energy-density science. Its diverse laser platforms offer researchers a wide range of capabilities to produce and explore states of matter under extreme conditions of high density, pressure, and temperature.
Additional information is available on the JLF website.
Laboratory for Energy Applications for the Future (LEAF)
Contact: Brandon Wood
LEAF is a multidisciplinary center that develops disruptive technologies for the grid, transportation, and the environment from inception to demonstration.
Additional information is available on the LEAF website.
Connect with LLNL scientists working in quantum computing, quantum algorithms, and quantum sensing.
Learn more about the LCQS internship.
Mass Spectrometry
Contact: Rachel Lindvall
LLNL’s mass spectrometry instruments offer experimental and diagnostic techniques that make it possible to count atoms, study lunar rocks, isolate isotopes, and characterize unknown material. These sophisticated tools enable our nuclear chemists, cosmochemists, and radiochemists to tackle complex science challenges.
Additional information is available on the Mass Spectrometry webpage.
Gain hands-on experience in materials synthesis, materials characterization, materials processing, analytical chemistry, actinide materials science, optical materials science, electrochemistry, materials engineering, materials chemistry, and physics.
Learn more about the MaCI summer program.
Nanoscale Synthesis and Characterization Laboratory (NSCL)
Contact: Alex Hamza
NSCL is making advances in science at the intersection of physics, materials science, engineering, and chemistry. We are pursuing research in nanoporous materials, advanced nano crystalline materials, novel 3D nanofabrication technologies, and nondestructive characterization at the mesoscale.
Additional information is available on the NSCL webpage.