Biosciences & Biotechnology
Protecting the nation by countering current and future biological and environmental threats
LLNL’s Biosciences & Biotechnology Division lies at the intersection of biological, physical, and engineering sciences. We apply an understanding of fundamental biology to predict and counter emerging biological and chemical threats and to solve problems in health and environmental security.
LLNL’s cutting-edge technologies, in combination with experimental and computational methods, help us solve important national problems in biosecurity, human health, and environmental biology. We perform fundamental and applied research in areas such as genomics, molecular toxicology, nanotechnology, host–pathogen biology, structural biology, genetics, microbial systems, and medical countermeasures. We employ world-class facilities and up-to-the-minute advances in the biosciences, physical sciences, nanotechnology, and imaging and measurement science to solve problems that matter.
Our multidisciplinary staff focus on integrating experimental and computational tools to understand complex cellular systems, testing and expanding our understanding of cellular mechanisms, and using our knowledge to provide solutions for countering current and emerging threats.
Explore this page to learn about the people, research, and resources that support our mission.
Learn more about bioscience and biotechnology research at LLNL
People
Research Groups
- Biochemical and Biophysical Systems
- Bionanomaterials
- Biosecurity and Bioforensics
- Environmental Biology
- Genomics
- Human Health Sciences
- Microbiology/Immunology
- Systems and Synthetic Biology
- Translational Immunology
Biochemical and Biophysical Systems
Group leader: Felice Lightstone
Scientists in the Biochemical and Biophysical Systems group use cutting-edge, multi-scale, in silico simulations to tackle problems in biology. We use a wide range of computational biology methods that employ LLNL’s high-performance computing resources to simulate systems from sub-atomic scale to population level. These methods include atomistic and coarse-grained molecular dynamics, quantum simulations, constraint-based genome-scale simulations, reaction-transport dynamic simulations, and agent-based, whole-organ, and pharmacokinetics/pharmacodynamics models.
We develop new computational methods to describe and predict biological systems. In addition, we combine experimental efforts with physics-based simulations and statistical and machine-learning models to accelerate the design and development of safe and effective therapeutics. Overall, we seek predictive understanding of protein-mediated processes related to critical missions of LLNL, including bioenergy, medical countermeasures, and new materials.
Learn more on our Biochemical and Biophysical Systems Group website.
Bionanomaterials
Group leader: Brent Segelke
The Bionanomaterials group conducts research at the nexus of biotechnology and nanoscience to support national biosecurity interests. We are a multidisciplinary team with expertise in physics, chemistry, materials science, and biology. Our unique, cross-cutting capabilities allow us to work together on basic and applied research furthering LLNLʼs mission to ensure global security. Bionanomaterials group members advance programs and technologies to enhance the nation’s defense, safeguard human health, and ensure economic resilience.
Our current research is focused on developing:
- Advanced bioanalytical and molecular imaging instrumentation for understanding structural and functional relationships of biomolecules and the subcellular molecular mechanisms of host-pathogen interactions.
- Novel detection methods for biological and chemical agents.
- Next-generation nanoporous materials that repel or neutralize chemical and biological agents and enable high performance molecular separations.
Learn more on our Bionanomaterials Group website.
Biosecurity and Bioforensics
Group leader: Wes Overton
The Biosecurity and Bioforensics group’s mission is to deliver intelligence-informed, science-based solutions to problems affecting human health and national security. We combine cutting-edge sequencing technologies and bioinformatic approaches to develop data-driven models of infection and medical countermeasures. Our current thrust areas are in bioremediation, metagenomic sequencing, bioinformatic analysis of naturally occurring communities, and advanced genetic engineering technologies such as CRISPR/Cas and how they affect cells and organisms. We work with various federal sponsors to deliver high-quality, science-based solutions to constantly evolving needs.
Learn more on our Biosecurity and Bioforensics Group website.
Environmental Biology
Group leader: Thomas Bunt
The Environmental Biology group develops and deploys high-impact operational capabilities to sample, characterize, and recover from biological events. Our diverse group includes expertise in environmental sampling, molecular biology, microbiology, ecology, clinical testing, antibody production, chemistry, and quality assurance. We strive to improve the time-to-results, efficiency, sensitivity, and specificity of operations used to mitigate biological threats.
Our research involves developing rapid viability methods for biological agents, fielding a clinical testing laboratory for COVID-19 response, deploying mobile biological laboratories for special event monitoring, and developing methods for detecting biothreats in complex environmental samples. Several members of our group are also applying their technical expertise to help with LLNL’s Life Extension Program (LEP) in the Strategic Deterrence Directorate.
Learn more on our Environmental Biology Group website.
Genomics
Group leader: Crystal Jaing
The Genomics group develops innovative bioassays to rapidly detect infectious agents and other pathogens to support public health, food safety, and drug safety. We apply expertise in genomics, bioinformatics, virology, and molecular biology to characterize pathogens, develop assays to detect microbial agents in the environment, identify novel biomarkers for diagnostics of infectious diseases, characterize unknown and emerging pathogens, and study the evolution and virulence mechanisms of key viral and bacterial threat agents.
Learn more on our Genomics Group website.
Human Health Sciences
Group leader: Heather Enright
The Human Health Sciences group conducts basic science and applied research on the mechanisms of action of the effects of chemicals and drugs in humans, how gene expression is regulated, and bone metabolism and fracture repair. We also focus on understanding the damage caused by radiation exposure, developing new technology for biosurveillance of outbreaks of infectious diseases, and accelerating the development of medical countermeasures. Our studies help us understand how people respond to drugs and chemicals, how they vary in their response, and how to prevent deleterious effects.
For an example of our vaccine development work, see the Cooperative Research Center for NanoScaffold-based Chlamydia trachomatis Vaccines webpage.
Learn more about our group on our Human Health Sciences Group website.
Microbiology/ Immunology
Group leader: Nicholas Be
The Microbiology/Immunology group is a diverse group of scientists with expertise in microbiology, virology, immunology, infectious disease pathogenesis, and microbiome science. We conduct research on host–pathogen interactions and microbial communities with a focus on biothreats and military medicine applications. Among our projects are studies of host immune responses during infection using a combination of in vitro and in vivo approaches, vaccine and therapeutic development, viral evolution and cross species transmission, and integration of assay design with simulations and machine learning.
Learn more about our group on the Microbiology/Immunology Group website.
Systems and Synthetic Biology
Group leader: Dan Park
The Systems and Synthetic Biology group designs proteins, microbes, and microbial communities for clean energy, manufacturing, agriculture, bioremediation, and human health. We use systems biology approaches to gain a predictive understanding of complex microbes/microbial communities and uncover foundational design rules that govern system level behavior. We employ synthetic biology approaches to redesign proteins and microbial pathways that sequester critical metals, resist mutational inactivation, and generate products of strategic importance. Using engineering and materials science principles, we translate fundamental science discoveries into platform technologies that benefit national security.
Learn more on our Systems and Synthetic Biology Group website.
Translational Immunology
Group leader: Matthew Coleman
The Translational Immunology group is a diverse group of scientists with expertise in immunobiology, cellular biology, biotechnology, and nanotechnology. We are conducting research on vaccine development and understanding inflammatory processes and diseases. Our group has developed novel nanotechnology tools for the synthesis and characterization of immunomodulatory proteins, nucleic acids, and small molecules with applications toward national biosecurity interests. Among our projects are studies of targeted immune responses using a combination of in-vitro and in-vivo approaches that focus on protein and nucleic acid vaccines, as well as small molecule immune modifiers.
For an example of our vaccine development work, see the Cooperative Research Center for NanoScaffold-based Chlamydia trachomatis Vaccines webpage.
Career Opportunities
You’ll find a highly collaborative environment at BBTD.
We’re always looking for talented scientists, especially in growth areas like computational biology, synthetic biology, neurobiology, and cellular biology. We’re known for research in genomics, bioanalytics, microbiology, infectious diseases, nanotechnology, and radiation biology.
At BBTD, you’ll work with experts across our diverse portfolio and have access to state-of-the-art facilities and innovative technologies. If you’re interested in joining our team, browse our open positions.
Capabilities & Facilities
Our researchers utilize world-class scientific capabilities and modern high-performance computing facilities to support Laboratory programs. Listed below are LLNL’s state-of-the-art capabilities commonly used by our scientists.
National Atmospheric Release Advisory Center (NARAC)
Contact: Lee Glascoe
NARAC is a national support and resource center for planning, real-time assessment, emergency response, and detailed studies of atmospheric releases of nuclear, radiological, chemical, biological, and natural materials. NARAC provides timely and accurate atmospheric plume predictions to aid emergency preparedness and response efforts in protecting the public and the environment.
Additional information is available on the NARAC website.
National Ignition Facility (NIF)
Contact: Dayne Fratanduono
NIF houses the world’s largest and highest-energy laser. NIF’s laser beams routinely create temperatures and pressures similar to those that exist only in the cores of stars and giant planets and inside nuclear weapons. The facilities are a key element of maintaining the reliability and safety of the U.S. nuclear deterrent without full-scale testing.
Additional information is available on the NIF website.
National User Resource for Biological Accelerator Mass Spectrometry (BioAMS)
Contact: Graham Bench
BioAMS makes accelerator mass spectrometry (AMS) available to biomedical researchers who need to accurately measure very low levels of radioisotopes. BioAMS is working to enhance AMS for analysis of radioisotopes in biomedical tracer studies through development of new methods and instrumentation.
Additional information is available on the BioAMS website.
Nuclear Counting Facility (NCF)
Contact: Keenan Thomas
Located two floors below ground, with a layer of shielding materials between floors to minimize background radiation, LLNL’s Nuclear Counting Facility provides high-sensitivity radiation measurements. Its assets include gamma spectrometers, solid-state detectors, alpha and beta counting systems employing ionization gas chambers, and liquid scintillation techniques.
The facility supports research in stockpile stewardship, nonproliferation, and counterterrorism, including:
- Analyzing samples and surrogate materials in support of nuclear forensics efforts.
- Studying samples collected during underground nuclear tests, which ended in 1992.
- Determining the number of radioactive atoms produced during experiments at LLNL’s National Ignition Facility.
Work directly with leading LLNL researchers on projects in nuclear forensics, nuclear chemistry, and environmental radiochemistry.
Learn more about the summer internship in nuclear science and security.
Optical Sciences
Contact: Wim De Vries
Our experts develop x-ray adaptive optics systems and optical payloads for nano-satellites. We have explored the use of survey telescopes for dark matter research, developed algorithms and software tools for simulation of orbital space events, and implemented sensor calibration and exploitation strategies for hyperspectral airborne sensors.
Research topics spanning astrophysics, planetary science, plasma science, fusion energy, optical science, and quantum science.
Learn more about our internship in physics.
Polymer Science
Contact: James Lewicki
We maintain capabilities to synthesize, characterize, and model a broad range of polymeric materials and architectures.
Quantum Coherent Device Laboratory
Contact: Yaniv Rosen
The Quantum Coherent Device Laboratory is a state-of-the-art research environment for quantum processor unit development. Learn more on the Quantum Coherent Device Laboratory webpage.
Radiative Properties
Contact: Marilyn Schneider
Our experts determine the radiation properties of plasmas produced at laser facilities such as the National Ignition Facility, the Jupiter Laser Facility, and the electron beam ion trap. These properties range from the basic atomic physics of isolated ions to opacities and radiation flow in hot dense matter to electron-positron pair production.
Radiochemistry Facilities
Contact: Roger Henderson
LLNL’s radiochemistry research facility houses more than 50 laboratories designed specifically for experiments focused on studying radioactive isotopes and element transformation. From trace-level environmental analysis of tritium, to high-activity transuranic samples, our capabilities allow us to analyze solid, liquid, and gas samples.
Our radiochemistry labs include fume hoods and gloveboxes, as well as class-100 clean rooms for extremely sensitive chemistry and measurements.
Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)
Contact: Zurong Dai
Scanning electron microscopy, energy dispersive x-ray spectroscopy, electron diffraction
Select Agent Center (SAC)
Contact: bioagent [at] lists.llnl.gov (Bioagent support)
The SAC has Biosafety Level-2, Biosafety Level-3, and Animal Biosafety Level-3 facilities. The center is registered with the Centers for Disease Control and Prevention, is Public Health Service (PHS) Assured, and is accredited by the Association for Assessment and Accreditation of Laboratory Animals, International (AAALAC).
Space Science Institute (SSI)
Contact: Megan E. Eckart
The SSI builds on Lawrence Livermore’s strengths in planetary science, astrophysics, nuclear science, optics, engineering, data science, and computing to develop high-impact projects and a mission-ready workforce.
Additional information is available on the SSI website.
X-ray Diagnostics
Contact: Stefan Hau-Reige
Our researchers use a wide range of diagnostics to measure and record experimental data. To obtain measurements needed for their cutting-edge research, our scientists have to develop new tools and continually add to their suite of diagnostic instruments.
X-ray Fluorescence Spectroscopy
Contact: Charlotte Eng
Our instruments enable bulk elemental analysis with ppm-level detection limits.