Quantitative Conclusions from Heavy-Ion Collisions

Scott Pratt, Michigan State University
MADAI Collaboration
Models and Data Analysis Initiative http://madai.us

Ist MADAI Collaboration Meeting, SANDIA 2010

Goals

I. Determine fundamental properties (parameters) describing super-hadronic matter from experimental data

OR

2. Validate that matter in H.I. collisions behaves consistently with known properties of equilibrated system (from lattice)

How this was done before (v2 and η / s) Study single parameter vs. single observable

PROBLEM

v2 depends on

- viscosity
- saturation model
- pre-thermal flow
- Eq. of State
- T-dependence of η / s
- initial $T_{x x} / T_{z z}$
e.g. Drescher, Dumitru, Gombeaud and Ollitrault PRC 2007

Correct Way (MCMC)

- Simultaneously vary N model parameters x_{i}
- Perform random walk weight by likelihood

$$
\mathcal{L}(\mathbf{x} \mid \mathbf{y}) \sim \exp \left\{-\sum_{a} \frac{\left(y_{a}^{(\text {model })}(\mathbf{x})-y_{a}^{(\exp)}\right)^{2}}{2 \sigma_{a}^{2}}\right\}
$$

- Use all observables y_{a}
- Obtain representative sample of posterior

Very Difficult Because...

I. Too Many Model Runs

Requires running model $\sim 10^{6}$ times
II. Many Observables

Could be hundreds of plots, each with dozens of points Complicated Error Matrices

Model Emulators

I. Run the model ~ 1000 times Semi-random points (LHS sampling)
2. Determine Principal Components $\left(y_{a}-\left\langle y_{a}\right\rangle\right) / \sigma_{a} \rightarrow z_{a}$
3. Emulate z_{a} (Interpolate) for MCMC Gaussian Process...
$\mathcal{L}(\mathbf{x} \mid \mathbf{y}) \sim \exp \left\{-\frac{1}{2} \sum_{a}\left(z_{a}^{(\text {emulator) })}(\mathbf{x})-z_{a}^{(\text {exp })}\right)^{2}\right\}$

S. Habib,K.Heitman,D.Higdon,C.Nakhleh\&B.Williams, PRD(2007)

$$
\begin{array}{llllll}
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{array}
$$

- Gaussian Process
- Reproduces training points
- Assumes localized Gaussian covariance
- Must be trained,
i.e. find "hyper parameters"
- Other methods also work

I4 Parameters

- 5 for Initial Conditions at RHIC
- 5 for Initial Conditions at LHC
- 2 for Viscosity
- 2 for Eq. of State

30 Observables

- π, K, p Spectra
$\left\langle p_{t}\right\rangle$, Yields
- Interferometric Source Sizes
- v_{2} Weighted by p_{t}

Initial State Parameters

$$
\begin{aligned}
\epsilon(\tau=0.8 \mathrm{fm} / c) & \left.=f_{\mathrm{wn}}\right) \epsilon_{\mathrm{wn}}+\left(1-f_{\mathrm{wn}}\right) \epsilon_{\mathrm{cgc}}, \\
\epsilon_{\mathrm{wn}} & \left.=\epsilon_{0} T\right) A \frac{\sigma_{\mathrm{nn}}}{2\left(\sigma_{\mathrm{sat}}\right)}\left\{1-\exp \left(-\sigma_{\mathrm{sat}} T_{B}\right)\right\}+(A \leftrightarrow B) \\
\epsilon_{\mathrm{cgc}} & =\epsilon_{0} T_{\min } \frac{\sigma_{\mathrm{mn}}}{\sigma_{\mathrm{sat}}}\left\{1-\exp \left(-\sigma_{\mathrm{sat}} T_{\max }\right)\right\} \\
T_{\min } & \equiv \frac{T_{A} T_{B}}{T_{A}+T_{B}}, \\
T_{\mathrm{max}} & \equiv T_{A}+T_{B}, \\
u_{\perp} & =\alpha \lambda \frac{\partial T_{00}}{2 T_{00}} \\
T_{z z} & =\gamma \beta
\end{aligned}
$$

5 parameters for RHIC, 5 for LHC

Equation of State and Viscosity

$$
\begin{aligned}
c_{s}^{2}(\epsilon) & =c_{s}^{2}\left(\epsilon_{h}\right) \\
& +\left(\frac{1}{3}-c_{s}^{2}\left(\epsilon_{h}\right)\right) \frac{X_{0} x+x^{2}}{X_{0} x+x^{2}+X^{\prime}}, \\
X_{0} & =X\left(R c_{s}(\epsilon) \sqrt{12},\right. \\
x & \equiv \ln \epsilon / \epsilon_{h}
\end{aligned}
$$

$$
\frac{\eta}{s}=\left(\frac{\eta}{s} T_{T=165}+\kappa \ln (T / 165)\right.
$$

2 parameters for EoS, 2 for $\boldsymbol{\eta} /$ s

DATA Distillation

I. Experiments reduce PBs to 100 s of plots
2. Choose which data to analyze Does physics factorize?
3. Reduce plots to a few representative numbers, y_{a}
4. Transform to principal components

Two Calculations

J.Novak, K. Novak, S.P., C.Coleman-Smith \& R.Wolpert, PRC 2014

RHIC Au+Au Data
6 parameters

S.P., E.Sangaline, P.Sorensen \& H.Wang, PRL 2015 RHIC Au+Au and LHC Pb+Pb Data 14 parameters, include Eq. of State

Sample

Spectra from Prior and Posterior

Sample HBT from Prior and Posterior

Eq. of State

$$
\begin{aligned}
c_{s}^{2}(\epsilon) & =c_{s}^{2}\left(\epsilon_{h}\right) \\
& +\left(\frac{1}{3}-c_{s}^{2}\left(\epsilon_{h}\right)\right) \frac{X_{0} x+x^{2}}{X_{0} x+x^{2}+X^{\prime 2}}, \\
X_{0} & =X^{\prime} R c_{s}(\epsilon) \sqrt{12}, \\
x & \equiv \ln \epsilon / \epsilon_{h}
\end{aligned}
$$

What should you expect for η / s at $T=165 \mathrm{MeV}$?

\author{

- ADS/CFT: 0.08
 - Perturbative QCD: > 0.5 ($\sigma \approx 3 \mathrm{mb}$)
 - Hadron Gas: $\quad \approx 0.2(\sigma \approx 30 \mathrm{mb})$
}

Viscosity from Hadron Cascade PRomascohke \& s.P. AArxiv

Π_{zz} from B3D vs. Israel Stewart
$\frac{d}{d \tau} \frac{\pi_{z z}}{\sigma_{P}}=-\frac{1}{\tau_{I S}} \frac{\left(\pi_{z z}-\pi_{z z}^{(N S)}\right)}{\sigma_{P}}$,
$\sigma_{P}^{2}(T) \equiv s \sum_{i}\left(2 S_{i}+1\right) \int \frac{d^{3} p}{(2 \pi)^{3}} f_{i}(p) \frac{p_{x}^{2} p_{y}^{2}}{E_{p}}$
$\tau_{I S}(T)=\frac{\eta s T}{\sigma_{P}^{2}}$

Viscosity from Hadron Cascade p.Romaschke \& s.P. AArxiv

- Sensitive to cross sections
- Consistent with $\mathrm{T}_{\text {IS }} \sim 1.9 \mathrm{~T}_{\text {coll }}$

For hadron gas , $0.15<\eta / \mathrm{s}(\mathrm{T}=165)<0.25$

Extracted η / s at $\mathrm{T}=165 \mathrm{MeV}$
consistent with expectations for hadron gas!

CONCLUSIONS

- Robust
- Emulation works splendidly
- Scales well to more parameters \& more data
- Eq. of State and Viscosity can be extracted from RHIC \& LHC data
- Other parameters not as well constrained
- Heavy-Ion Physics can be a Quantitative Science!!!!

FUTURE

- Improve statement of uncertainties
- Add parameters many related to hadronization region
- Consider more data
- more observables
- data from different beams/energies
- Improve models
- Lumpy initial conditions
- 3D calculations for lower energies
- Fill in missing physics (especially near hadronization)

If you're interested...

I. Tools are easily extended
2. Download software and tutorial from http://madai.us
3. Talk to me (prattsc@msu.edu) or Evan Sangaline (esangaline@gmail.com)

Made possible by contributions from DOE, NSF, Chris Coleman-Smith, John Novak, Kevin Novak, Evan Sangaline, Paul Sorensen, Joshua Vredevoogd , Hui Wang, Robert Wolpert, and viewers like you.

Additional slide: Charge BFs and charge susceptibilities

