

"Classification" Categories to be Used for the Assignment of Scientific Priority to the 12 GeV Experiments \rightarrow a la Larry

Cardman, JLab PAC

* Fragmentation

1.The Hadron spectra as probes of QCD (GluEx and heavy baryon and meson spectroscopy)
2. The transverse structure of the hadrons (Elastic and transition Form Factors)
3.The longitudinal structure of the hadrons (Unpolarized and polarized parton distribution functions)
4. The 3D structure of the hadrons (Generalized Parton and Transverse Momentum Distributions)
5. Hadrons and cold nuclear matter ${ }^{*}$

Spectroscopy

Form
 Factors

 (Medium modification of the nucleons, quark hadronization, N-N correlations, hypernuclear spectroscopy, few-body expts)
6. Low-energy tests of the Standard Model and Fundamental Symmetries (Møller, PVDIS, PRIMEX,)

Crash Intro to
 Hadron Structure

The Quark Model

Hadrons are composed of quarks with :
(1) flavor: u, c, t (charge $+2 / 3$) d, s, b (charge $-1 / 3$) (2 color: $R, G, B \quad 3$ spin: $1 / 2$

Each hadron observed in nature is white ("color singlet")
> Baryons 3-quark systems, with colors RGB
$>$ Mesons quark + antiquark with colors CC

proton

neutron

The spectrum of observed hadrons is (roughly) explained:

Mesons: Spin 0 Mesons: Spin 1 Baryons:
 Spin 1/2
p uud
n udd
$\Sigma^{+} u u s$
$\Sigma^{0} u d s$
$\Sigma^{-} d d s$
$\Lambda u d s$
$\begin{array}{lll}\phi & s \bar{s} & \Xi^{0} u s s \\ \omega & u \bar{u} \oplus d \bar{d} \oplus s \bar{s} & \Xi^{-} d s s\end{array}$

Hadronic Multiplets

- MESONS $=q \bar{q}$

- BARYONS $=q q q$ or $\overline{q q q}$

N.C.R. Makins, NNPSS 2015

Murray Gell-Mann, 1964:

"A search for stable quarks ... at the highest energy accelerators would help
to reassure us of the non-existence of real quarks."

Electron Scattering and Scaling

Elastic scattering from the proton: $\frac{e^{\prime}}{}$ Deep-Inelastic scattering (DIS):

Parton Distribution Functions

Let's look inside the proton: Deep-Inelastic Scattering (DIS) with high energy beams \Rightarrow a rich substructure is revealed!

sea quarks : virtual quark-antiquark pairs that fluctuate in and out of the vacuum!
gluons : carriers of the strong force
\boldsymbol{X} fraction of proton momentum carried by struck quark
$\boldsymbol{q}(\boldsymbol{x})$ parton distribution func ${ }^{n}$ (number density for quark flavor q)

3 constituent quarks of mass $\approx 350 \mathrm{MeV}$
∞ many current quarks with bare masses $\approx 5 \mathrm{MeV}$

Quantum Chromodynamics

The Theory of the Strong Interaction

$$
\mathcal{L}_{\mathrm{QCD}}=-\Psi\left\{\gamma_{\mu}\left[\partial_{\mu}-\frac{i}{2} g \lambda^{a} A_{\mu}^{a}(x)\right]+M\right\} \Psi-\frac{1}{4} \mathcal{F}_{\mu v}^{a} \mathcal{F}_{\mu \nu}^{a}
$$

The End.

Bound States in QED and QCD

QED
Coupling $\alpha=1 / 137$ is weak at relevant scales

\checkmark Perturbation theory works very well
\checkmark Non-relativistic quantum mechanics ok
e.g. Hydrogen: binding $\mathrm{E}=13.6 \mathrm{eV} \ll \mathrm{M}_{\text {elec }}=511 \mathrm{keV}$

Coupling α_{s} blows up at relevant scales!
\times Perturbation theory impossible
X Bound systems inherently relativistic

$$
\begin{aligned}
& \text { e.g. Proton: Mass }=938 \mathrm{MeV} \gg \\
& \text { bare } \mathrm{m}_{\text {quark }}=5 \mathrm{MeV}!
\end{aligned}
$$

CONFINEMENT

Color Anti-Screening

Color Anti-Screening: C.Quigg, Sci. Am. April 1985

found in a footnote from Griffiths, "Elementary Particles"

SCREENING AND CAMOUFLAGE EFFECTS modify the behavior of fundamental forces over distance. The left panel shows an electron in a vacuum; it is surrounded by short-lived pairs of virtual electrons and positrons, which in quantum theory populate the vacuum. The electron attracts the virtual positrons and repels the virtual electrons, thereby screening itself in positive charge. The farther from the electron a real charge is, the thicker the intervening screen of virtual positive charges is and the smaller the electron's effective charge will be. The color force is subject to the same screening effect (center). Virtual color charges (mostly quark-antiquark pairs) fill the vacuum; a colored quark attracts contrasting colors,
thereby surrounding itself with a screen that acts to reduce its effective charge at increasing distances. An effect called camouflage counteracts screening, however. A quark continuously radiates and reabsorbs gluons that carry its color charge to considerable distances and change its color, in this case from blue to green (right). A charge's full magnitude can be felt only outside the space it occupies. Therefore camouflage acts to increase the force felt by an actual quark as it moves away from the first quark, toward the edge of the color-charged region. The net result of screening and camouflage is that at close range the strong interaction, which is based on the color charge, is weaker, whereas at longer ranges it is stronger.

Flavor Structure of the Proton

Constituent Quark Model

Pure valence description: proton $=2 u+d$
Perturbative Sea Sea quark pairs from $g \rightarrow q \bar{q}$ should be flavor symmetric:

$$
\bar{u}=\bar{d}
$$

Non-perturbative models: alternate deg's of freedom ${ }^{\circ}$

Meson Cloud Models

Chiral-Quark Soliton Model

- quark degrees of freedom
in a pion mean-field
- nucleon $=$ chiral soliton
- one parameter:
dynamically-generated quark mass
- expand in $1 / N_{c}$

'tHooft instanton vertex

$$
\sim \bar{u}_{R} u_{L} \bar{d}_{R} d_{L}
$$

The Puzzle of Proton Spin

The proton: spin $\mathbf{1 / 2}$

The quarks' spins account for only 25\%

What the Detector Sees in a High-Energy Collision ...

PRE

N.C.R. Makins, NNPSS15

What Happens in a High Energy Collision

Confinement at Work!
Creation of hadrons from struck quark: Fragmentation

Our Friends, the Hadrons

Particles you need to know!

The only particles that can make tracks in typical detectors : must be charged and must live long enough

- Pions: $\pi^{+}=u \bar{d}, \pi^{-}=d \bar{u}, m_{\pi^{ \pm}}=140 \mathrm{MeV}$ lightest and most common of mesons
- Kaons: $K^{+}=u \bar{s}, K^{-}=s \bar{u}, m_{K^{ \pm}}=494 \mathrm{MeV}$ lightest mesons with strange quarks
- Protons and antiprotons:

$$
p=u u d, \quad \bar{p}=\bar{u} \bar{u} \bar{d}, \quad m_{p}=938 \mathrm{MeV}
$$

the only truly stable hadrons in nature

- Electrons and positrons: $e^{ \pm}, m_{e}=0.5 \mathrm{MeV}$ lightest charged leptons, also stable
- Muons:

$$
\mu^{ \pm}, m_{\mu}=107 \mathrm{MeV}
$$

heavy electrons \rightarrow don't radiate much,
\therefore easily pass through materials
Other hadrons are observed via their decays, e.g. $\rho^{0} \rightarrow \pi^{+} \pi^{-}$

Hadronic Multiplets

- MESONS $=q \bar{q}$

- BARYONS $=q q q$ or $\overline{q q q}$

N.C.R. Makins, NNPSS 2015

A Wee Bit O' Jargon-Busting

- baryon jargon: N*s, hyperons, and cascades
- meson classes: pseudoscalar, vector, scalar, ...
- quantum numbers $\mathbf{J P}^{\mathbf{P}} \mathbf{0}^{-}(\pi), \mathbf{1}^{-}(\rho), \mathbf{0}^{+}\left(\mathrm{f}_{0}\right)$
- why do pions have negative parity? ($\mathrm{S}=0, \mathrm{~L}=0$)
\because quarks \& antiquarks have opposite intrinsic parity
- isovector vs isoscalar: mesons and PDF combinations
- isovector (l=1): $\pi, \rho \ldots \mathrm{u}(\mathrm{x})-\mathrm{d}(\mathrm{x})$
- isoscalar (l=0): η, $\omega \ldots \mathrm{u}(\mathrm{x})+\mathrm{d}(\mathrm{x})$

Deep-Inelastic Scattering \& friends : Key Processes

The virtual photon and $\mathbf{Q}^{\mathbf{2}}$

In relativistic quantum mechanics = quantum field theory, scattering due to a force between particles
(e.g. $\mathrm{E} \& \mathrm{M}$) is treated as if a virtual particle were exchanged between beam and target

The virtual photon γ^{*} is just a combination of E and B fields ... "virtual" \rightarrow short-lived

force	carrier
E \& M	photon γ
strong	gluon g
weak	W, Z

Kinematic variables of electron scattering

$$
\begin{array}{ll}
\text { electron beam } e & k=[E, \vec{k}]=[E, 0,0, k] \\
\text { scattered electron } e^{\prime} & k^{\prime}=\left[E^{\prime}, \vec{k}^{\prime}\right] \quad m_{e}^{2}=k \cdot k=k^{\prime} \cdot k^{\prime} \\
\text { virtual photon } \gamma^{*} & q=[v, \vec{q}] \equiv k-k^{\prime}=\left[E-E^{\prime}, \vec{k}-\vec{k}^{\prime}\right]
\end{array}
$$

$$
Q^{2} \equiv-q \cdot q=|\vec{q}|^{2}-v^{2}>0!
$$

Virtual photon has imaginary mass, unlike a real photon

At high enough Q^{2} and W^{2} we scatter not from the whole proton, but from a collection of pointlike, nearly-massless quarks
Elastic electron-quark scattering:

$$
\begin{gathered}
k+p_{q}=k^{\prime}+p_{q}^{\prime} \quad \rightarrow \quad p_{q}^{\prime}=q+p_{q} \\
\left(p_{q}^{\prime}\right)^{2}=m_{q}^{2}=\left(q+p_{q}\right)^{2}=q^{2}+\not p q^{2}+2 q \cdot p_{q} \quad \rightarrow \quad 2 q \cdot p_{q}=-q^{2}=Q^{2}
\end{gathered}
$$

Suppose the struck quark carries a fraction x of the target proton's 4-momentum P

$$
\begin{aligned}
p_{q}=x P & \rightarrow p_{q}=x P=\left[x M_{p}, 0\right] \text { in lab frame } \\
& \rightarrow Q^{2}=2 q \cdot p_{q}=2 q \cdot P x=2 v M_{p} x
\end{aligned}
$$

$$
x=\frac{-q \cdot q}{2 P \cdot q}=\frac{Q^{2}}{2 M_{p} v}
$$

DIS experiments measure this for every event

$$
p_{q}=x P
$$

Deep-inelastic scattering : PDFs and \mathbf{Q}^{2}

$$
x=\frac{Q^{2}}{2 M_{p} v}
$$

When we are scattering from individual pointlike quarks within the target, we are in the regime of deep-inelastic scattering

DIS regime: $\mathrm{Q}^{2}>1 \mathrm{GeV}$

$$
\frac{d \sigma}{d x d Q^{2}}=\left(\frac{d \sigma}{d x d Q^{2}}\right)_{\text {point(eq } \rightarrow \mathrm{eq})} \cdot \sum_{q=u, d, s, \bar{u}, \bar{d}, \bar{s}} e_{q}^{2} q\left(x, Q^{2}\right)
$$

The interesting, proton substructure part of the xsec is described by parton distribution functions $q(x)$

- PDFs describe number density of quarks at different momentum-fractions \boldsymbol{x}
- one PDF per quark flavour

$$
\{q(x)\}=u(x), d(x), s(x), \bar{u}(x), \bar{d}(x), \bar{s}(x)
$$

- PDFs depend only very weakly on Q^{2}

Deep-inelastic scattering and W ${ }^{2}$

In DIS, the proton breaks up into many hadrons \rightarrow fragmentation
hadronic final state: total invariantmass W

elastic scattering ep \rightarrow ep
resonance region $\mathrm{ep} \rightarrow \mathrm{e} \Delta, \mathrm{eN}^{*}, \ldots$

DIS regime: $\mathrm{W}>2 \mathrm{GeV}$
$e p \rightarrow e(X=$ many hadrons $)$

Example kinematics : HERMES

$\mathrm{e}^{+} / \mathrm{e}^{-}$beam of energy 27.6 GeV -on- fixed targets

N.C.R. Makins, NNPSS15

Semi-Inclusive Deep-Inelastic Scattering (SIDIS)

In SIDIS, a hadron \boldsymbol{h} is detected in coincidence with the scattered lepton:
Factorization of the cross-section:

The Distribution Function
momentum distribution of quarks q within their proton bound state

- lattice QCD progressing steadily

$$
d \sigma^{h} \sim \sum_{q} e_{q}^{2} q(x) \cdot \hat{\sigma} \cdot D^{\mathrm{q} \rightarrow \mathrm{~h}}(z)
$$

The perturbative part
Cross-section for elementary photon-quark subprocess

Large energies $\boldsymbol{\rightarrow}$ asymptotic freedom
\Rightarrow can calculate!
The Fragmentation Function
momentum distribution of hadrons h formed from quark q

- not even lattice can help ...

Semi-Inclusive Deep-Inelastic Scattering (SIDIS)

In SIDIS, a hadron \boldsymbol{h} is detected in coincidence with the scattered lepton:
Factorization of the cross-section:

The Distribution Function
momentum distribution of quarks q within their proton bound state

- lattice QCD progressing steadily

The Fragmentation Function
momentum distribution of hadrons h formed from quark q

- not even lattice can help ...

Leptons: clean, surgical tools

Disentangle distribution (f) and fragmentation (D) functions \rightarrow ideally measure all processes

These are the only processes where TMD factorization is proven

W production
"Drell-Yan 2.0"

Hadron-Hadron \rightarrow Leptons

$$
\sum_{q} e_{q}^{2} \mathbf{f}_{\mathbf{q}}^{\left(\mathbf{H}_{1}\right)}\left(x_{1}\right) \mathbf{f}_{\overline{\mathbf{q}}}^{\left(\mathbf{H}_{2}\right)}\left(x_{2}\right)
$$

- Cleanest access to sea quarks

$$
\begin{aligned}
& \text { e.g. } \bar{d}(x) / \bar{u}(x) @ \text { Fermilab } \\
& \text { e.g. } \Delta \bar{u}(x), \Delta \bar{d}(x) @ \text { RHIC }
\end{aligned}
$$

Hadron-Hadron \rightarrow Hadrons

- Powerful + large cross-sections but more complex e.g. $\Delta \mathrm{g}$ "workhorse" processes at RHIC :
$\mathrm{A}_{\mathrm{LL}} \rightarrow \pi^{0}+\mathrm{X}$ @ PHENIX $\quad \pi^{0} \mathrm{p}_{\mathrm{T}}(\mathrm{GeV} / \mathrm{c})$
ALL \rightarrow jet + X @ STAR

More Jargon-Busting

- u-quark dominance
- off-shell vs on-shell and poles in xsecs/amplitudes
- longitudinal vs transverse photons
- helicity conservation
- Vector Meson Dominance (VMD) ... any more ?

Helicity Conservation \& L,T Photons

Write DIS xsec to reveal contributions from L and T photons:

$$
\frac{d \sigma}{d E^{\prime} d \Omega} \sim \sigma_{L}+\sigma_{T}\left(1+\frac{2|\vec{q}|^{2}}{Q^{2}} \tan ^{2} \frac{\theta}{2}\right) \quad \begin{aligned}
& F_{1} \sim \sigma_{T} \\
& F_{2} \sim\left(\sigma_{L}+\sigma_{T}\right) 2 x /\left(1+\frac{Q^{2}}{v^{2}}\right)
\end{aligned}
$$

Fact : Fermions with $E \gg m$ conserve helicity in any EM interaction, which requires Transv $=$ Spin 1 photons ... unless transv momentum significant

TRANSVERSE PHOTON

LONGITUDINAL PHOTON

- $R=\frac{\sigma_{L}}{\sigma_{T}} \rightarrow 0$ as $\mathrm{Q}^{2} \rightarrow \infty=$ key evidence that quark is spin $1 / 2$!
- $R \approx 0 \rightarrow$ Callan-Gross relation: $\sum e_{q}^{2} x q(x)=F_{2}(x) \approx 2 x F_{1}(x)$ (only one structure function)

The Hadron Physics Landscape : Next 10 Years

The Facilities: Today

- 12 GeV polarized e : first beam 2013, commissiong 2014, producn 2015
- Complementary capabilities in 4 Halls \rightarrow broad physics program

STAR PH汽ENIX

- Transv (T) \& Longit (L) polarized p beams colliding at $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$ or 500 GeV
- L core : AlLo ${ }^{\text {T0 }}$ (PHENIX) \& $A L^{\text {jet }}$ (STAR) $\rightarrow \Delta \mathbf{g}(\mathbf{x})$: $A_{L}{ }^{W_{ \pm}}$at $\sqrt{ }{ }_{s}=500 \mathrm{GeV} \rightarrow \Delta \mathbf{q b a r}(\mathbf{x})$
- T core : $\mathrm{A}_{\mathrm{N}}{ }^{\mathrm{r0}, \mathrm{n}, \mathrm{jet}, \ldots \rightarrow \text { Sivers/Collins/Twist-3 mix }}$

- $190 \mathrm{GeV} \pi$ - beam on T-polarized H target \rightarrow polarized Drell-Yan
- First beam expected end of 2014

Beam Commissioning to Hall A

Jefferson Lab in Newport News hits major milestone in accelerator upgrade April 30, 2014|By Tamara Dietrich, tdietrich@dailypress.com | Daily Press Jefferson Lab in Newport News has reached a "major milestone" in its drive to double the energy of its electron accelerator and become the only facility in the world capable of answering key questions about quarks, the building blocks of matter.

Beam on carbon target in Hall A ; $\mathrm{E}_{\text {beam }}=\mathbf{6 . 1} \mathrm{GeV}$

12 GeV CEBAF: Three Year Schedule

Pushing to Physics

+ SOLID detector in Hall A \rightarrow large acceptance \& high rate for parity violation (PVDIS) \& polarized SIDIS programs

STAR PH 关ENIX

Forward! Forward! \rightarrow higher $\eta=$ higher $x_{\text {beam }}$, lower $x_{\text {target }}$

+ STAR Forward Calorimeter System = EMCal + HCal
\rightarrow forward jets \& e/h separaton for Drell-Yan
+ fsPHENIX = forward spectrom w EMCal, HCal, RICH, tracking \rightarrow forward jets + identified hadrons and Drell-Yan

Polarized Beam and/or Target w SeaQuest detector
A high-luminosity facility for polarized Drell-Yan

+ E-1027 MI p \uparrow beam w polarized source +1 Siberian Snake
+ E-1039 SeaQuest with polarized $p \uparrow$ target

The Proton Spin Puzzle: Quark and Gluon Polarízation

The Pieces of the Spin Puzzle

$$
q(x)=\vec{q}(x)+\overleftarrow{q}(x) \quad \Delta q(x)=\vec{q}(x)-\overleftarrow{q}(x)
$$

only three possibilities

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

(1) Quark polarization

$$
\Delta \Sigma \equiv \int d x(\Delta u(x)+\Delta d(x)+\Delta s(x)+\Delta \bar{u}(x)+\Delta \bar{d}(x)+\Delta \bar{s}(x)) \approx 25 \% \text { only }
$$

(2) Gluon polarization

$$
\Delta G \equiv \int d x \Delta g(x) \text { small...? }
$$

(3) Orbital angular momentum

$$
L_{z} \equiv L_{q}+L_{g}
$$

State of the art: DSSV global fit to Δq and ΔG
full next-to-leading order QCD
DeFlorian, Sassot, Stratmann, Vogelsang, PRL 101 (2008) and PRD 80 (2009)

World Data: polarized eN and pp scattering

Spin-Dependent
Deep Inelastic
Scattering (DIS)

The polarized photon selects certain quark polarizations:

IMPOSSIBLE
... goes to ... quark!

Double spin asymmetries are measured :

$$
A_{1}=\frac{\sigma_{1 / 2}-\sigma_{3 / 2}}{\sigma_{1 / 2}+\sigma_{3 / 2}} \simeq \frac{g_{1}}{F_{1}}=\frac{\sum_{q} e_{q}^{2} \Delta q\left(x, Q^{2}\right)}{\sum_{q} e_{q}^{2} q\left(x, Q^{2}\right)}
$$

The story so far ... from inclusive measurements of $g_{1}\left(x, Q^{2}\right)$

- $\Delta \Sigma$ is around 20-30 \%
- some indication that Δs may be negative ... (-10\% ??)
- some indication that ΔG may be positive ... ?

Semi-Inclusive DIS (SIDIS)

In SIDIS, a hadron \boldsymbol{h} is detected in coincidence with the scattered lepton

Flavor Tagging in LO QCD:

$$
A_{1}^{h}\left(x, Q^{2}\right)=\frac{\int_{z_{\text {min }}}^{1} d z \sum_{q} e_{q}^{2} \Delta q\left(x, Q^{2}\right) \cdot D_{q}^{h}\left(z, Q^{2}\right)}{\int_{z_{\text {min }}}^{1} d z \sum_{q} e_{q}^{2} q\left(x, Q^{2}\right) \cdot D_{q}^{h}\left(z, Q^{2}\right)}
$$

$D_{q}^{h}\left(z, Q^{2}\right)$: Fragmentation function
Measures probability for struck quark q to produce a hadron h with

Energy fraction

$$
z \equiv \frac{E_{h}}{v}
$$

The Proton Spin Puzzle: What results might we expect?

Spin from the SU(6) Proton Wave Function

The 3 quarks are identical fermions $\Rightarrow \psi$ antisymmetric under exchange

$$
\psi=\psi(\text { color }) * \psi(\text { space }) * \psi(\text { spin }) * \psi(\text { flavor })
$$

(1) Color: All hadrons are color singlets = antisymmetric

$$
\psi(\text { color })=1 / \sqrt{ } 6(\mathrm{RGB}-\mathrm{RBG}+\mathrm{BRG}-\mathrm{BGR}+\mathrm{GBR}-\mathrm{GRB})
$$

(2) Space: proton has $l=l^{\prime}=0 \rightarrow \psi($ space $)=$ symmetric
(3) Spin: $2 \otimes 2 \otimes 2=\left(3_{\mathrm{S}} \oplus 1_{\mathrm{A}}\right) \otimes 2=4_{\mathrm{S}} \oplus 2_{\mathrm{MS}} \oplus 2_{\mathrm{MA}}$

- 4_{S} symmetric states have spin 3/2, e.g. $\left|\frac{3}{2},+\frac{3}{2}\right\rangle=\uparrow \uparrow \uparrow$
- 2_{MS} and 2_{MA} have spin $1 / 2$ and mixed symmetry: S or A under exchange of first 2 quarks only. For proton:

$$
\left|\frac{1}{2},+\frac{1}{2}\right\rangle_{\mathrm{MS}}=(\uparrow \downarrow \uparrow+\downarrow \uparrow \uparrow-2 \uparrow \uparrow \downarrow) / \sqrt{ } 6 \quad\left|\frac{1}{2},+\frac{1}{2}\right\rangle_{\mathrm{MA}}=(\uparrow \downarrow \uparrow-\downarrow \uparrow \uparrow) / \sqrt{ } 2
$$

(4) Flavor: symmetry groups $\mathrm{SU}(2)$-spin and $\mathrm{SU}(3)$-color are exact ...

- strong force is flavor blind
- constituent q masses similar: $m_{u}, m_{d} \approx 350 \mathrm{MeV}, m_{s} \approx 500 \mathrm{MeV}$
$\Rightarrow \mathrm{SU}(3)$-flavor is approximate for u, d, s
SU(3)-flavor gives $3 \otimes 3 \otimes 3=10_{\mathrm{S}} \oplus 8_{\mathrm{MS}} \oplus 8_{\mathrm{MA}} \oplus 1_{\mathrm{A}}$
$>$ Proton: $\psi(\mathrm{s}=1 / 2)$ from spin $2_{\mathrm{MS}},{ }_{\mathrm{MA}} \otimes \psi(u u d)$ from flavor $8_{\mathrm{MS}}, 8_{\mathrm{MA}}$

$$
\left|p^{\uparrow}\right\rangle=\left(u^{\uparrow} u^{\downarrow} d^{\uparrow}+u^{\downarrow} u^{\uparrow} d^{\uparrow}-2 u^{\uparrow} u^{\uparrow} d^{\downarrow}+2 \text { permutations }\right) / \sqrt{18}
$$

> Count the number of quarks with spin up and spin down:

- Quark contributions to proton spin are:

$$
\Delta u=N\left(u^{\dagger}\right)-N\left(u^{\downarrow}\right)=+\frac{4}{3} \quad \Delta d=N\left(d^{\dagger}\right)-N\left(d^{\downarrow}\right)=-\frac{1}{3}
$$

$$
\Rightarrow \Delta \Sigma=\Delta u+\Delta d+\Delta s=1 \quad \text { All spin present \& accounted for! }
$$

Proton Spin Structure: the Sea

Meson Cloud Models
Li, Cheng, hep-ph/9709293

$\rightarrow \Delta q_{\text {valence }}>0$
$\rightarrow \Delta q_{\text {sea }}<0$
$\rightarrow \Delta \bar{q}=0$
"Higher-order" cloud of vector mesons can generate a small polarization.

Constituent Quark Model

$$
\Delta u=+\frac{4}{3}, \quad \Delta d=-\frac{1}{3}
$$

Chiral-Quark Soliton Model

Light sea quarks
Goeke et al, hep-ph/0003324 polarized:

Instanton Mechanism

'tHooft instanton vertex
$\sim \bar{u}_{R} u_{L} \bar{d}_{R} d_{L}$ transfers helicity from valence u quarks to $d \bar{d}$ pairs

No gluons
in these models

What results do we get?

A Wealth of Spin Data

A Wealth of Spin Data

Polarized p-p Scattering

$$
\text { at RHIC } \rightarrow \Delta G
$$

Polarized Deep-Inelastic Scattering

polarized e
electron / muon beams $\rightarrow \Delta \mathbf{q}$

PH ${ }^{\text {* }}$ ENIX

Flavour Symmetry of the Light Sea

Unpolarized PDF's for \bar{u} and \bar{d} :
Polarized PDF's for \bar{u} and $\bar{d} \ldots$ Strong isospin-symmetry breaking

Weak isospin-asymmetry observed in the light sea polarization results between meson cloud \& chiral-quark soliton models
... more data coming from RHIC

Longitudinal Data

	V_{s}	$\mathrm{L}^{*}\left(\mathrm{pb}^{-1}\right)$
2006	200	$\mathbf{7}$
2009	200	$\mathbf{2 5}$
\boldsymbol{u}	500	10
2011	500	12
2012	500	82
2013	500	300

L* recorded at STAR

$\Delta \mathrm{g}$ at RHIC $\rightarrow 2020$

(1) Δg workhorses:

pQCD Fits :

N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

(2) reduce $\mathrm{x}_{\text {min }}$ from $0.05 \rightarrow 0.02$ via $\sqrt{ } \mathrm{s}=500 \mathrm{GeV}$ \& new/near-term forward detectors (e.g. PHENIX MPC)
(3) constrain x-dependence of $\Delta g(x)$ via \approx exclusive final states
\rightarrow dijets at STAR \& di- π^{0} at PHENIX
\rightarrow reconstruct initial-state parton kinematics

-g 2020+
(4) forward upgrades : reduce $\mathrm{X}_{\text {min }} \rightarrow 0.001$

What's left?

$$
\begin{aligned}
& \frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+\mathrm{L}_{\mathrm{q}}+\mathrm{L}_{\mathrm{g}} \\
& \mathrm{~L}+\text { Relativity } \approx \text { Weirdness }
\end{aligned}
$$

The Pieces of the Spin Puzzle

$$
q(x)=\vec{q}(x)+\overleftarrow{q}(x) \quad \Delta q(x)=\vec{q}(x)-\overleftarrow{q}(x)
$$

only three possibilities

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

(1) Quark polarization

$$
\Delta \Sigma \equiv \int d x(\Delta u(x)+\Delta d(x)+\Delta s(x)+\Delta \bar{u}(x)+\Delta \bar{d}(x)+\Delta \bar{s}(x)) \approx 30 \% \text { only }
$$

(2) Gluon polarization
$\Delta G \equiv \int d x \Delta g(x) \quad$ small...?
(3) Orbital angular momentum

In friendly, non-relativistic bound states like atoms \& nuclei (\& constituent quark model), particles are in eigenstates of L

$$
L_{z} \equiv L_{q}+L_{g} \quad ?
$$

Not so for bound, relativistic Dirac particles ..
Noble L is not a good quantum number

Dirac free planewave particle with

Boosting a Dirac Spinor

and Σ isn't a
 4-vector, oy

 $\operatorname{spin} S_{z}=+1$$$
\begin{aligned}
& \vec{p}^{\prime}=p^{\prime} \hat{x} \\
& \psi^{\prime}=N\left(\begin{array}{c}
1 \\
0 \\
0 \\
\frac{p^{\prime}}{E^{\prime}+m}
\end{array}\right) e^{i\left(p^{\prime} x^{\prime}-E^{\prime} t^{\prime}\right)} \\
& \text { What's its spin? } \\
& \checkmark
\end{aligned}
$$

$$
\frac{\psi^{\dagger} \vec{\Sigma} \psi}{\psi^{\dagger} \psi}=\hat{z}
$$

$$
\begin{array}{rr}
\overrightarrow{\boldsymbol{\Sigma}}=\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \overrightarrow{\boldsymbol{\sigma}}
\end{array}\right) & \frac{\psi^{\prime \dagger} \overrightarrow{\boldsymbol{\Sigma}} \psi^{\prime}}{\psi^{\prime \dagger} \psi^{\prime}}=\hat{z}\left[1-\left(\frac{p^{\prime}}{E^{\prime}+m}\right)^{2}\right] \\
\overrightarrow{\boldsymbol{\sigma}}=\left(\begin{array}{cc}
\hat{z} & \hat{x}-i \hat{y} \\
\hat{x}+i \hat{y} & -\hat{z}
\end{array}\right) & \approx \hat{z} \frac{1}{\gamma^{2}} \text { for } \gamma \gg 1
\end{array}
$$

Why there are no transversely polarized electron machines

Spin, L, and the free Dirac Hamiltonian

$$
\mathbf{H}=\boldsymbol{\alpha} \cdot \vec{p}+\boldsymbol{\beta} m=\left(\begin{array}{cc}
m \mathbf{1} & -i \overrightarrow{\boldsymbol{\sigma}} \cdot \vec{\nabla} \\
-i \vec{\sigma} \cdot \vec{\nabla} & m \mathbf{1}
\end{array}\right)
$$

$\overrightarrow{\mathbf{L}}(\vec{x})=1 \vec{x} \times \vec{p} \quad$ L position-dependent, doesn't commute $\mathrm{w} \partial_{\mathrm{i}}$ in \mathbf{H}

 $\left[\mathbf{H}, \overrightarrow{\mathbf{L}}\left(x_{i}\right)\right]=-\overrightarrow{\boldsymbol{\alpha}} \times \vec{\nabla}$L not conserved
$\vec{\Sigma}=\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right) \longmapsto$ Pauli matrices in $\boldsymbol{\Sigma}$ and \mathbf{H} don't commute
$\left[\sigma_{i}, \sigma_{j}\right]=2 i \varepsilon_{i j k} \sigma_{k}$

$$
\begin{aligned}
& {[\mathbf{H}, \overrightarrow{\boldsymbol{\Sigma}}]=2 \overrightarrow{\boldsymbol{\alpha}} \times \vec{\nabla}} \\
& \text { SPIN NOT CONSERVED } \\
& \left.+\frac{1}{2} \overrightarrow{\boldsymbol{\Sigma}}\right]=\left[\begin{array}{ll}
\mathbf{H}, \overrightarrow{\mathbf{J}}]=0 & \text { J CONSERERVED } \\
\text { N.C.R. Makins, QCD Town MIt, Philiadelphia, Sep 13, } 2014
\end{array}\right.
\end{aligned}
$$

Dirac particle in a central potential

We denote the solution of the above-mentioned equation by the Dirac four-spinor ψ and/or its upper- and lower-component, the corresponding two-spinors φ and χ. The stationary states are characterized by the following set of quantum numbers ε, j, m and P which are respectively the eigenvalues of the operators \hat{H} (the Hamiltonian), $\hat{\mathbf{j}}^{2}, \hat{j}_{z}$ (total angular momentum and its z-component) and \hat{P} (the parity). Since every eigenstate of the valence quark characterized by ε, j, m and P corresponds to two different orbital angular momenta l and $l^{\prime}=l \pm 1$, (see Appendix A), it is clear that orbital motion is involved in every stationary state. This is true also when the valence quark is in its ground state ($\psi_{\varepsilon j m P}$ where $\varepsilon=\varepsilon_{0}, j=1 / 2$, $m= \pm 1 / 2, P=+{ }^{2}$). This state can be expressed as follows:
$\psi_{\varepsilon_{0} 1 / 2 m+}(r, \theta, \phi)=\binom{f_{0}(r) \Omega_{0}^{1 / 2 m}(\theta, \phi)}{g_{1}(r) \Omega_{1}^{1 / 2 m}(\theta, \phi)}$.
The angular part of the two-spinors can be written in terms of spherical functions $Y_{l l_{=}}(\theta, \phi)$ and (nonrelativistic) spin-eigenfunctions which are nothing else but the Pauli-spinors $\xi(\pm 1 / 2)$:
$\Omega_{0}^{1 / 2 m}(\theta, \phi)=Y_{00}(\theta, \phi) \xi(m)$,

The spherical solutions of a Dirac particle in a central potential are discussed in some of the text books (see, for example, Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. Vol. 4: Relativistic quantum theory. New York: Pergamon 1971). The notations and conventions we use here are slightly different. In order to avoid possible misunderstanding, we list the general form of some of the key formulae in the following:

In terms of spherical variables, a state with given ε, j, m and P can be written as:

$$
\begin{align*}
& \psi_{\varepsilon j m p}(r, \theta, \phi) \tag{A1}\\
& \quad=\binom{f_{\varepsilon l}(r) \Omega_{l}^{j m}(\theta, \phi)}{(-1)^{\left(l-l^{\prime}+1\right) / 2} g_{\varepsilon l^{\prime}}(r) \Omega_{l^{\prime}}^{j m}(\theta, \phi)} .
\end{align*}
$$

Here $l=j \pm 1 / 2, l^{\prime}=2 j-l$ and $P=(-1)^{\prime} ; \Omega_{i}^{j m}$ and $\Omega_{i^{\prime}}^{j m}$ are twospinors which, for the possible values of l, are given by:

$$
\begin{align*}
& \Omega_{l=j-1 / 2}^{j m}(\theta, \phi) \\
& = \\
& \quad+\sqrt{\frac{j+m}{2 j} Y_{l l_{z}=m-1 / 2}(\theta, \phi) \xi(1 / 2)} \begin{array}{l}
\Omega_{l=j+1 / 2}^{j m}(\theta, \phi) \\
= \\
\quad-\sqrt{\frac{j-m+1}{2 j+2}} Y_{l l_{z}=m+1 / 2}(\theta, \phi) \xi(-1 / 2) \\
\quad+\sqrt{\frac{j+m+1}{2 j+2}} Y_{i l_{z}=m+1 / 2}(\theta, \phi) \xi(-1 / 2)
\end{array} \tag{A2}
\end{align*}
$$

Here, $\xi(\pm 1 / 2)$ stand for the eigenfunctions for the spin-operator $\hat{\sigma}_{z}$ with eigenvalues ± 1, and $Y_{l /=}(\theta, \phi)$ for the spherical harmonics which form a standard basis for the orbital angular momentum operators $\left(\hat{\mathbf{l}}^{2}, \hat{l}_{z}\right)$. The function $f_{\varepsilon /}(r)$ and $g_{\varepsilon l^{\prime}}(r)$ are solutions of the coupled differential equations:

TMDs, GPDs, and the Meaning of Life

Unpolarized PDF

Polarized PDF

$\leadsto \backsim \odot=q(x) \Omega \sim \rightarrow \odot \rightarrow \leftrightarrow=\Delta q(x)$

PDF \#3 "Transversity"
study

3 Classes of Parton Distribution Functions

(1) Traditional PDFs

(2 TMDs: Transverse Momentum Dependent PDFs

BOER-MULDERS

$f_{1 T, q}^{\perp}\left(x, k_{T}\right) \sim \vec{L}_{q} \cdot \vec{S}_{p} \quad h_{1, q}^{\perp}\left(x, k_{T}\right) \sim \vec{L}_{q} \cdot \vec{S}_{q}$

Blue boxes: Functions surviving on integration over transverse momentum

Distribution Functions

$\mathrm{h}_{\mathrm{LL}}^{\mathrm{A}}=\oslash \rightarrow-\bigcirc \rightarrow$

The others are sensitive to intrinsic $\boldsymbol{k}_{\boldsymbol{T}}$ in the nucleon \& in the fragmentation process

Fragmentation Functions

$$
\mathrm{G}_{\mathrm{IT}}=\stackrel{\uparrow}{-}-\stackrel{1}{-}
$$

$$
\mathrm{H}_{\mathrm{IL}}^{\perp}=\oslash \rightarrow-\bigcirc \rightarrow
$$

$$
\mathrm{H}_{\mathrm{IT}}^{\perp}=\hat{0}-\hat{0}^{\dagger}
$$

One T-odd function required to produce single-spin asymmetries in SIDIS
beam target poln poln

SIDIS, at leading twist

UU 1

$$
\cos \left(2 \phi_{h}^{l}\right)
$$

UL $\quad \sin \left(2 \phi_{h}^{l}\right)$
$\otimes h_{1 L}^{\perp}=\bullet \rightarrow-$
$\otimes H_{1}^{\perp}=(\cdot$

UT $\sin \left(\phi_{h}^{l}+\phi_{S}^{l}\right)$
$\otimes h_{1}=\stackrel{4}{+}-\stackrel{\uparrow}{i}$
$\otimes H_{1}^{\perp}=$
$\sin \left(\phi_{h}^{l}-\phi_{S}^{l}\right)$
$\otimes f_{1 T}^{\perp}=\stackrel{\perp}{\bullet}-\bullet$
$\otimes D_{1}=\bullet$
$\sin \left(3 \phi_{h}^{l}-\phi_{S}^{l}\right)$
$\otimes h_{1 T}^{\perp}=\bullet_{\bullet}^{\perp}-\stackrel{4}{\bullet}$
$\otimes H_{1}^{\perp}=!$
LL 1
$\otimes g_{1}=\Theta \rightarrow-\rightarrow$
$\otimes D_{1}=\bullet$
LT $\quad \cos \left(\phi_{h}^{l}-\phi_{S}^{l}\right) \quad \otimes g_{1 T}=\stackrel{\perp}{\bullet}-\stackrel{\perp}{\bullet}$
LT $\quad \cos \left(\phi_{h}^{l}-\phi_{S}^{l}\right) \quad \otimes g_{1 T}=\stackrel{\perp}{\bullet}-\stackrel{\perp}{\bullet}$
$\otimes f_{1}=\bullet \quad \otimes D_{1}=\bullet$
$\otimes h_{1}^{\perp}=(t$
$\otimes H_{1}^{\perp}=$
$\otimes D_{1}=\bullet$

Transversity
$h_{1}(x)$

Photo-Album of our New Friends

Boer-Mulders

$h_{1}^{\perp}\left(x, k_{T}\right)$

Favored / Disfavored Frag Functions

$$
D_{\mathrm{RV}} \equiv D^{u \rightarrow \pi^{+}}=D^{d \rightarrow \pi^{-}}=\ldots
$$

$$
D_{\mathrm{dis}} \equiv D^{u-\pi^{-}}=D^{d-\pi^{+}}=\ldots
$$

(3) Generalized Parton Distributions

Analysis of hard exclusive processes leads to a new class of parton distributions

Scattering at high Q^{2} and W^{2} ... but create only one particle in final-state!

\boldsymbol{x} : average quark momentum fac ${ }^{\mathrm{n}}$
ξ : "skewing parameter" $=x_{1}-x_{2}$
\boldsymbol{t} : 4-momentum transfer ${ }^{2}$ to target

Four new distributions = "GDs"
helicity conserving $\rightarrow H(x, \xi, t), E(x, \xi, t)$ helicity flip $\rightarrow \tilde{H}(x, \xi, t), \tilde{E}(x, \xi, t)$
"Femto-photography" of the proton
Fourier transform of t-dependence ...

spatial distribution of parton !

- DIS structure func's: $q(x)=H^{q}(x, \xi=0, t=0)$ forward limit ($\xi=0, t=0$)

$$
\Delta q(x)=\tilde{H}^{q}(x, \xi=0, t=0)
$$

Connection to

 many observables- Elastic form factors: $\quad F_{1}^{q}(t)=\int_{-1}^{1} d x H^{q}(x, \xi, t) \quad F_{2}^{q}(t)=\int_{-1}^{1} d x E^{q}(x, \xi, t)$ first moments in x
- Ji sum rule:

$$
J^{q}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, t=0)+E^{q}(x, \xi, t=0)\right]
$$

Note connection of H, E to Dirac, Pauli form factors ... and their connection to nucleon magnetic moment:

$$
F_{1}^{N}(0)+F_{2}^{N}(0)=\mu_{N}
$$

Transverse-momentum dependent PDFs (TMDs)

- 3D-densities in momentum space : $\left(\mathrm{x}, \mathrm{k}_{\mathrm{T}}, \mathrm{k}_{\mathrm{T}}\right)$
- Gaussian distributions with a width of $\sim 0.6 \mathrm{GeV}$ in k_{T}
- flavor dependence: d-quark TMDs are larger than u-quark TMDs

Wigner Distributions

Impact-parameter picture of GPDs: correlation between transverse position and longitudinal momentum $\rightarrow \underline{r} \times p$!

Barbara Pasquini, IWHSS'12

Wigner Distributions

$$
\left[\vec{b}_{\perp}, \vec{k}_{\perp}\right] \neq 0 \begin{gathered}
\text { Heisenberg's } \\
\text { uncertainty relations }
\end{gathered} \longrightarrow \text { Quasi-probabilistic }
$$

Third 3D picture with probabilistic interpretation!

$$
\begin{aligned}
& \text { [Wigner (1932)] QM } \\
& \text { [Belitsky, Ji, Yuan (04)] QFT (Breit frame) } \\
& \text { [Lorce', BP (11)] QFT (light cone) } \\
& \vec{b}_{\perp}=\frac{\vec{r}_{f \perp}+\vec{r}_{i \perp}}{2} \stackrel{\text { Fourier conjugate }}{\longleftrightarrow} \vec{\Delta}_{\perp}=\vec{k}_{f \perp}-\vec{k}_{i \perp} \\
& \vec{z}_{\perp}=\vec{r}_{i \perp}-\vec{r}_{f \perp} \stackrel{\text { Fourier conjugate }}{\longleftrightarrow} \quad \vec{k}_{\perp}=\frac{\vec{k}_{f \perp+} \vec{k}_{i \perp}}{2}
\end{aligned}
$$

L so far : the Sivers Function

$$
\begin{gathered}
f_{1 T}^{1}\left(x, k_{T}\right) \\
\bullet \bullet
\end{gathered}
$$

Phenomenology: The SIGN of L

M. Burkardt: Chromodynamic lensing

Electromagnetic coupling $\sim\left(J_{0}+J_{3}\right)$ stronger for oncoming quarks

Nearly all models predict $\mathrm{L}_{\mathrm{u}}>\mathbf{0}$...

Parton energy loss considerations suggest quenching of jets from "near" surface of target
\Rightarrow quarks from "far" surface should dominate
Opposite sign to data ...

We observe $\left\langle\sin \left(\phi_{h}^{l}-\phi_{S}^{l}\right)\right\rangle_{\mathrm{UT}}^{\pi^{+}}>0$ (and opposite for π^{-})
\therefore for $\phi_{S}^{l}=0, \phi_{h}^{l}=\pi / 2$ preferred

Model agrees!

Meson Cloud on an Envelope \rightarrow It ORBITS

Pions have $\mathrm{JP}^{-}=0^{-}=$negative parity..
\rightarrow need $\underline{L=1}$ to get proton's $\mathrm{JP}=1 / 2^{+}$
$\mathbf{N} \pi$ cloud:
2/3 $n \pi^{+}$
$1 / 3 \mathrm{p} \pi^{0}$
\otimes

$2 / 3 \quad L_{z}=+1$

$1 / 2 \quad L_{z}=-1$
$1 / 3 \quad L_{z}=0$
$1 / 6 \quad L_{z}=+1$

Dominant
u , dbar sea $=\mathrm{n} \pi^{+}$with $\mathrm{L}_{\mathrm{z}}\left(\pi^{+}\right)>0$
source of:
d, ubar sea $=\Delta^{++} \pi^{-}$with $\mathrm{L}_{\mathbf{z}}\left(\pi^{-}\right)<0$
N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

Quark Orbital Angular Momentum (connected insertion)

Lattice calculations : L(u+ubar) negative?

LHPC, S. Syritsyn et al., [111.0718]
QCDSF, A. Sternbeck et al, [1203.6579]

Keh-Feh Liu @ SPIN 2014

Flavor-singlet g_{A}
KehFeh Liu, INT Workshop, Feb 2012

- Quark spin puzzle (dubbed 'proton spin crisis')
- Experimentally (EMC, SMC, ... $\Delta \Sigma=g_{A}^{0} \sim 0.2-0.3$

$$
\bar{\Psi} \gamma_{\mu} \gamma_{5} \Psi(t)(u, d, s)
$$

New: Disconnected Insertions \rightarrow Sea

$$
g_{A, c o n}^{0}=(\Delta u+\Delta d)_{c o n}
$$

$$
g_{A, d i s}^{0}=(\Delta u+\Delta d+\Delta s)_{d i s}
$$

Quark Spin, Orbital Angular Momentum, and Gule Angular Momentum (M. Deka et al, 1312.4816)

add Disconnected Insertions \rightarrow Pure Sea

These are quenched results so far. Keh-Feh Liu @ SPIN 2014

