Nuclear Astrophysics

Jeff Blackmon (LSU)

		1.	Inti	Introduction, Formalism, Big Bang and H burning													
1 H		2.	He	He burning, Heavy elements & s process										2 He			
L)®	Be	3. ;	Ste	Stellar Explosions							8	C	7 N	O	F	10 Ne	
11 Na	12 Mg											13 A	14 Si	15 P	18 S	17 Cl	18 Ar
19 K		21 SC	22 T	23 V	24 Cr	25 Mn	23 Fe	27 Co	23 Ni	29 Cu	³⁰ Zn	81 Ga	32 Ge	as As	34 Se	35 Br	88 Kr
Rb	339 S r	39 Y	40 Zr	41 ND	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	43 Cd	4© In	50 Sn	51 Sb	52 Te	53	54 Xe
CS CS	58 Ba	57 La	72 Hf	73 Ta	74) W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg		Pb	Bi	84 Po	At 85	86 Rn
87 Fr	Ra	88 AC	104 Unq	105 Unp	108 Unh	107 Uns	Uno	103 Une	110 Unn								

Ce	Pr	Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 To	66 Dy	67 HO	68 Er	60 Tm	70 Yb	71 Lu
10 Th	91 Pa	U	Np	84 Pu	Am	⁹³ Cm	97 B K	Ç f	ss Es	100 Fm	101 Md	102 NO	103 Lr

In the beginning. . . .

Space, time, matter, & energy began with the Big Bang Observations in 3 very different epochs probe the Big Bang Nucleosynthesis CMB - The afterglow Stellar observations proton neutron ³He **Radius of the Visible Universe** Parting Company First Galaxies Quark Soup nflation Modern Umv Bang 10'32 Sec. 1 Second 300,000 Years **1 Billion Years** 12-15 Billion Years 0 Age of the Universe

Optical Observations: Type Ia Supernova

Type Ia: very bright thermonuclear explosions resulting in the total destruction of a star

- Shape of light curve \rightarrow true brightness
- Observed brightness \rightarrow distance from earth
- Doppler shift \rightarrow velocity relative to earth

2011 Nobel Prize

Riess Perlmutter Schmidt

Objects are moving away from earth with velocity faster than Hubble's Law

The expansion of the universe is *accelerating*

Cosmic Microwave Background

WMAP: CMB ObservationsPhotons left over from Big BangFrom instant when atoms/molecules formMatter and energy composition is imprinted on variations in temperature with position

DARK ENERGY (e.g. cosmological constant) exerts a "negative pressure" causing the acceleration

75% DARK ENERGY

21% DARK

4% NORMAL

 $4.5 \pm 0.3\%$ of universe is baryonic \rightarrow test with nucleosynthesis

The Homogeneous BBN Model

~All free neutrons into ⁴He Mass 5 & 8 gaps inhibit formation of heavy elements

•

 \bullet

p ~75% ⁴He ~25% ²H,³He ~ 10⁻⁵ ⁷Li ~ 10⁻¹⁰

Nuclear reactions in the lab & in space

In the lab:

cross section

reaction rate

In astrophysical events:

$$\frac{reactions}{cm^3 s} = \int \frac{n_x}{cm^3} \frac{n_y}{cm^3} v\sigma(v)\phi(v)dv$$
$$\phi(v) = 4\pi v^2 \left(\frac{\mu}{2\pi kT}\right)^{3/2} \exp\left(-\frac{\mu v^2}{2kT}\right)$$
$$\frac{reactions}{cm^3 s} = \frac{n_x}{cm^3} \frac{n_y}{cm^3} \langle \sigma v \rangle$$
$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu}} (kT)^{3/2} \int_0^\infty \sigma E e^{-E/(kT)} dE$$

Reaction	site	Т (10 ⁶ К)	kT (keV)	r _{turn} (fm)	r (fm)	E ₀ (keV)
p+p	sun	15	1.3	1100	2.5	6
p+N	CNO	30	2.6	3900	4.3	42
α +C	red giant	190	16	1060	4.8	300
p+F	nova	300	26	500	4.5	230
α+S	x-ray burst	1000	86	500	5.9	1800
He+He	big bang	2000	170	33	3.8	580

Direct Laboratory Measurements

Directly measure cross sections in the lab at the lowest possible energies

Bombarding energy range $\sim 10 \text{ keV}$ to $\sim \text{MeV}$

High currents (~ mA)
Long run times
Efficient detectors to obtain high statistics
Pure, stable targets
Absolute cross section measurements
Good normalization & careful control of systematic uncertainties
Background suppression crucial

Textbook example

$$S \equiv \sigma E e^{\sqrt{E_G/E}}$$

$$E_G = \frac{2\mu}{\hbar^2} \left(\pi Z_1 Z_2 e^2\right)^2$$

Previous experimental limit

Need σ here for sun

Simple Big Bang Reaction Network

Solve the reaction rate network

Abundance Observations can be used to constrain matter density - the only free parameter - independent of WMAP

- Most abundances agree with BBN calculations using WMAP η
- One problem: ⁷Li

Cosmological Li problem

- Direct σ measurements have seemingly ruled out any nuclear solution
- Is Spite plateau really reflective of primoridal abundances?

Hydrogen burning in stars

Inner 70% of sun's radius is dominated by radiative heat transport

Large T,P gradient

Opacity: photons absorbed and emitted at shorter λ

Luminosity/opacity/T relationship $\longrightarrow L \propto M^4$

Hydrostatic equilibrium $\frac{dP(r)}{dr} = -\frac{GM_{in}(r)\rho(r)}{r^2}$

Energy conservation

$$\frac{dL(r)}{dr} = \frac{\varepsilon(r)\rho(r)}{4\pi r^2}$$

Pressure

 $P(r) = P_{gas}(r) + P_{rad}(r)$

For sun (non-degenerate) $P_{gas}(r) = \frac{k}{\langle m \rangle} \rho(r) T(r)$ $P_{rad}(r) = \frac{1}{3} a T^{4}(r) << P_{gas}(r)$

The sun M=2x10³⁰ kg $\rho(0)=150 \text{ g/cm}^3$ T(0)=1.5x10⁷ K T(surf)=5800 K L=3.8x10²⁶ W

5x10⁴ yr for energy produced in sun's core to be reach surface

Solar fusion: The pp-chains

Thanks to substantial efforts in experiment, theory & evaluation

pp-1:	5% 5% 7%	¹ H(p,e ⁺ ν) ² H ² H(p,γ) ³ He ³ He(³ He,2p) ⁴ He	84.7%
pp-2:	3% 13%	³ He(α,γ) ⁷ Be ⁷ Be(e ⁻ , v) ⁷ Li ⁷ Li(p,α) ⁴ He	13.8% 13.78%
pp-3 :	5-10%	⁷ Be(p,γ) ⁸ B ⁸ B(β ⁺ ν)2 ⁴ He	0.02%
fusion of 4 1	- 	Only v most e + 2e+ + 2ve + 26.	experiments measure 7 MeV energy release

energy

³He(³He,2p)⁴He

- 1999 First measurement of a pp reaction σ at the *solar* Gamow widow
- Somewhat unique situation
 ⇒ 2 protons with E_p > 6 MeV

$I \approx 1 mA$

- Windowless ³He gas target
- 2 events/month at lowest energy (*E_{cm}*= 16 keV)
- Effect of electron screening has been largely resolved
- About 7% uncertainty at solar energies

Why still measure solar neutrinos?

- ⁸B flux ~4% precision
 →Super-K, SNO, Borexino, . . .
- ⁷Be flux ~5% precision →Borexino
- Others
 →Radiochemical (integral)
- Neutrino flavor oscillation
 →Neutrinos have mass
 - →Mass ≠ Flavor eigenstates

- But weak constraints on photospheric luminosity (pp neutrino flux)
- What is contribution of CNO cycle to solar energy generation?
- Is photospheric composition reflective of solar core?

