

Exploration of using neon-like xenon lines on X-ray crystal spectrometers on EAST

B. Lyu¹, D. Lu¹, F.D. Wang¹, L. F. Delgado-Aparicio², J. Chen³, J. Fu¹, M. Bitter², K.W. Hill², S.G. Lee⁴, Y.F. Jin¹, B.N. Wan², M.Y. Ye¹ and EAST team¹

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China

²Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

³School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China

⁴ National Fusion Research Institute, Daejeon 305-333, Korea

Outline

Background

- Upgrade of XCS on EAST
- Performance and data validation
- Future collaboration plan

Summary

Background

- Ar XVII becomes hollow and Ar XVIII is relatively low in the outer low electron temperature region.
- Measuring two spectra simultaneously is one of the way of obtaining the whole profile.

Parameters of the two-crystal assembly

Double-crystal assembly for TXCS (He- and H-like Ar)

Impurity	Crystal	2d of crystal / Å	Wavelength A	Bragg angle (°)
Ar XVII	Quartz 110	4.91304	λ_1 =3.9494 (W) λ_2 =3.9944 (Z)	$\begin{array}{l} \theta_1 \!=\! 53.5010 \\ \theta_2 \!=\! 54.3927 \end{array}$
Ar XVIII	Quartz 102	4.56225	$λ_3$ =3.7300 (Ly _{a1}) $λ_4$ =3.7353 (Ly _{a2})	$\theta_3 = 54.8432$ $\theta_4 = 54.9589$

Double-crystal assembly for PXCS (He-like Ar and Fe)

Impurity	Crystal	2d of crystal / Å	Wavelength Å	Bragg angle (°)
Ar XVII	Quartz 110	4.91304	λ_1 =3.9494 (W) λ_2 =3.9944 (Z)	$\theta_1 = 53.5010$ $\theta_2 = 54.3927$
Fe XXV	Ge 422	2.3098	$\lambda_3 = 1.8480(W)$ $\lambda_4 = 1.8730(Z)$	$\theta_3 = 53.1367$ $\theta_4 = 54.1832$

B. Lyu et al. RSI 85 (2014) 11E406

Current XCS system on EAST

PILATUS 900K

□Large area: 83.8*325.3cm² /300Hz

□Pixelated: single-photon counting > 1GHz

DWater-cooled for long-pulse operation

B. Lyu et al. RSI 85 (2014) 11E406

He-like and H-like spectra measured by XCS

Raw spectra data from TXCS

Helium-like and Hydrogen-like Argon spectra

B. Lyu et al. RSI 87 (2016) 11E326

Data validation of H-like Ar spectra

ASIPP

J. Chen et al. Nucl. Tech 38 (2015) 110403 7

Comparison between PXCS and TXCS

Both evolution and radial profiles of Te and Ti for two spectrometers agrees within the uncertainty

Method of wavelength calibration

- Locked mode
- Comparison with MHD frequency
- Cross comparison with CXRS

Consideration for ITER and CFETR

- ITER XCS is proposed to use W or Kr as the diagnosing ion
- Xenon is another good candidate as for both core and edge diagnostics
 - Higer line intensity than Kr for same radiated power loss

Impurity profile prediction on ITER

L.F. Delgado-Aparicio et al., 32nd Meeting of ITPA Topical Group on Diagnostics, May 9-12, 2017, Chengdu, China.

Xe Spectrum Simulation

A simulation of emissivity for Xe and W lines. Coronal equilibrium, collisional radiative model. n_e= 10²⁰m⁻³.

Xe-Ar crystal assembly

- New Ne-like Xe crystals with similar Bragg angle to He-like Ar

*	Line	Wavelengt h (Å)	Crystal 2d (Å)	Bragg angle (deg)
	Ar XVII W	3.9494	4.913	53.5010
A	Xe XLIV	2.7368	6.686	54.9515

- Installed on the poloidal XCS to measure twospectra simultaneously
- X-ray testing with titanium anode shows the crystal reflectivity and potential application for wavelength calibration

Crystal assembly and specification

Setup and test results

Spectra of Titanium Ka

Hu et al, RSI 89(2018)10F110

Measurement of Xe spectra

- New lines were observed with Xe injection in both XCS and EUV spectrometers
- One line was determined to be Xe line
 through 2nd order diffraction from the crystal

Lyu et al, RSI in preparation

13

Ion temperature measurement

- Simultaneous measurement of two spectra provides additional data validation through T_i comparison
- Consistency in the T_i evolution is observed although there is some difference in the absolute value: possibly due to the strong line averged effect in Ar spectra
- Proof of concept for future high temperature diagnostics

Collaboration plan

> Further experimental analysis on Xenon spectra:

- Effect on the discharge performance
- Wavelength, intensity (effect of impurity transport)
- Comparison with EBIT for verification
- Wavelength calibration with external source and Ti/Cd anodes
 - Preliminary lab test proved the feasibility

Parameter	Value	
Eeam energy	5-30keV	
Beam current	~20mA	
Magnetic field	~1.0T	
Magnet type	NbTi	
Cooling	Conduction	
method	cooled (dry)	
Spectra range	Visible to X-ray	
Element	W (Fe, Xe, Ar)	

A compact EBIT for impurity spectra

Summary

- Upgrade of detector technology and two-crystal assembly has significantly elevated the performance in terms of time resolution and high temperature on EAST
- XCS can provide the ion temperature and rotation velocity profiles in high temperature after the application of double-crystal, with results from He-like and H-like spectra consistent with each other in low electron temperature
- New crystal testing was ready for probing the Ne-like Xe spectra: a testbed for fusion reactor

Thank you!

THOMSON DIAGNOSTIC

EAST编辑干涉仪读言

We are here!