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Motivation

€ Some critical problems in ITER:

[ Nucl. Fusion, Progress in the ITER Physics basis (2007)]

» MHD instabilities: neoclassical tearing modes (degrade confinement
capability of plasma, even lead to disruption), and so on

» Plasma confinement and transport (anomalous transport induced by

turbulence)

€ NTMs and turbulence can interact strongly.




Interaction between NTMs and Turbulence

@ Turbulence modulated by TM or NTM: Yu, NF 1992; Bardéczi,PRL
2016, Sun, PPCF 2018, ....
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Interaction between NTMs and Turbulence

€ TM or NTM driven by turbulence: Kaw, PRL 1979, Itoh, PRL 2003,
McDevitt, POP 2006, Sen, NF 2009, Wang, POP 2009; Muraglia, NF 2017
Ishizawa, POP 2013, Isayama, JPFR 2013, Bardoczi,POP 2017,
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A mechanism of NTMs onset by drift wave turbulence

@ The basic physics of tearing modes
> Away from rational surface, oy is determined by the ideal MHD
equations. It has a discontinuous derivative at rational surface.
> At the singular layer, oy is determined by resistive MHD Egs.

» By matching the solutions of outer and inner region, the dispersion
relation can be obtained.

' 0" 1.8
Aoy = 2;10_[0_ dxfde// cos &, 5 ;
.1 |dsy| doy| |
A'= - : 0.9 .
oy | dr |+ dr|, :




Basic physics of neoclassical tearing modes

@ The free energy source for the instability is the bootstrap current,
pressure driven magnetic 1sland

@ Slowing evolving equilibrium governed by neoclassical Ohm’s law:

<E-B>:77<J-B>—L<B-V-ne >,
ne

— J// — Johm + Jbs

€ Modified Rutherford equation:

T—;d—sz'+A'b+...,
r. dt

D <J.B>OOS7’CI ' 82 ?
A'b: nc:_al\/;dp q — bffpV< /|VW|>

W dr q'B, <B’>> dq/dy




Turbulence driven current

€ Mechanisms:

» Residual electron stress: can drive electron momentum flux and
lead to a turbulence-driven current (acting like residual 1ons
stress) (Garbet X. et al 2014; Wang W.X. et al 2012)

» Turbulence acceleration: relies on the exchange of momentum
between 1ons and electrons, which can also accelerate electrons

and drive a current. (Garbet X. et al 2014; Wang W. X. Et al 2012)

» Resonant scattering: establish an equilibrium between trapped
and passing electrons due to resonant scattering by turbulence,
and drive a mean current. (McDevitt, et al, 2017)

v The Previous two mechanisms are similar to those of ions,
resulting from the symmetry breaking of turbulence spectrum.




Turbulence driven current
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» Current profile significantly modified
» Finite (k) 1s needed for both parallel acceleration and residual stress

» k| symmetry breaking is caused by turbulence intensity




Heuristic interpretation
@ With turbulence-driven current, the perturbed modified Ohm’s law
d]// = Gspé‘E// + &]bs + djtur

€ JJ,, is the perturbed turbulence-driven current, affected by the
large scale ExB drift flow related to NTMs.

djtur oC §¢ntm
where 65¢"" 1s the electrostatic potential of NTMs.

@ Hence, turbulence-driven current may affect NTMs via parallel
Ohm’s law.

@ Turbulence also can affect NTMs by changing the transport
coefficients, like viscosity, thermal diffusivity...
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A mechanism of NTMs onset by drift wave turbulence

@ Given magnetic field:
B=IV{+V{xV(y+0w),0py =0ycosé,E=mbO—nl

@ The matching between outer region and inner region:

! IO o'y, _ 2 Ak
Sy Y ox°
introducing

-1 A
Q:—éw/§zﬁ+%x2 — 5y /5y +%(l//—wv)2,w2 =4(8—‘/’j M,wl =w(6—‘”j
w w, ‘ or q,' or

§> j dx6],, cos &

One can obtain

, 1 4R

A = 26?5 L IOQ<5]//cos.§>
vy g, ¢

where

&  (..)

<...>=§%m

denotes the flux surface average.
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The modified Ohm’s law

@ Drift kinetic equation for mean distribution:

_ _ OF OSF™
v,b-VF, +v,-VF, —ev,E, a—;+ v -VOF" —ev,O0E)" a—; =C(F))

where 7 = F +sF™,6F™ =0,and only electrostatic fluctuation is considered.

separatingF, = F, + F., F, is caused by magnetic drift,

RdO| - o OOF," oF,, Rd0O
i;q {5"5 -VOF" —ev,0F, —*— . —ev,E, . ] ft;q C(F)
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A A

Further, the Krook model is assumed, as C(F.)=—v_F,.,
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c
| 4
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Here, electrons are assumed to be passing, the scattering effect and
collisionless bootstrap current due to turbulence are not considered.
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The modified Ohm’s law

@ The Ohm’s law including electrostatic turbulence:

e (10
J// = GSpE// +Jbs +‘]tur’ Jtur = mv (; 8}” I/'H//e +M//ej

[1,, =2mm, [ duB,/m, [ dv,v, (v} -VrsF! ) is an electron momentum,
M, =2me|duB,/m,|dv,SE]"SF" from electron-ion momentum exchange.

8u//,e -
+Vuye+ T,

I1,, ==,

or

The first term 1s anomalous electron viscosity, the second term
1s a pinch of electron momentum, and the last term refers

to electron residual stress.

Next, we focus on the last term.
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The modified Ohm’s law

@ The expression of perturbed distribution can be obtained from
linearized drift equation:

tur

éthur _ w— a)e 85¢m,n
mon T M,

el a — k//V// ¢ T

e

where the effects of magnetic drift and collision are not considered.

Keeping transit resonance, one can obtain

2 tur
m @ - o, m o | eop,
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e e
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The evolution of turbulence in the presence of NTMs

@ A wave kinetic equation (WKE) for the drift wave action density:

)-aﬂ 0 (k.v"fm)-a]:ik =S, N, =(1+k2p?) | esp", I T, [

19).¢ _&
w, 1s frequency of drift wave,
v =cbx V"™ /B, 1s the electrostatic flow of NTM.

S=y.N,-Aw,N;} 1S the source term, where the first term denotes the

linear drive of drift waves in the presence of NTMs, the second
term represents the nonlinear like-scale interaction.

Here, it 1s assumed that the self-interaction of small-scale
turbulence fields 1s small compared to the interaction
between turbulence and NTMs.
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The evolution of turbulence in the presence of NTMs

Considering small deviation from the equilibrium drift wave spectrum,

OON, +8a)k .557\7,( + 0 (k.vntm). ON _Q(k,vmm).éN_kO_}/kéNk
ot ok oOx 0k ox Ox ok

y ON,, ¢ 0°0¢™ dw
ON; ~— - 7k = 2 2 Ve —
yi +d-v,) ok. B, or ok

Then, the turbulence-driven current perturbed by NTMs:
N lu 2 83 5 ¢ntm
N T / e ?

b=l M mjdk kop! P 00—, exp| - % @’ L N 1o
e m klk,|L, @, 2T, k} )(1+kipl) ° ok, yi+(-v,)

The current from M,. 1s not included, since it is an odd function, and

has no effect on NTMs.
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The evolution of NTMs

The evolution of magnetic i1sland

2
8w ldw_ . Gl\/LgrS 'BH( W W +62W5”J
w

2 2 2 2 2
¢’ ndt sL, witw,  w w

2 G3 TR rsdi

1/2
Wﬁol:\/a( j \/gpeia Wtur_\/;TA g |lu//,e|

odenotes the sign of the turbulence intensity gradient or the
shear flow gradient.

rS
sL,

Considering the drift wave turbulence,

3/2 3 )
2 G3 TR me I/'S dilo&'
W =~ 5 ]tur
L |L |a
8S Z-A mi qSS n 1

where k,p. ~1 and the turbulence mode width w,, ~ o, are chosen.
I,=Y ledsg IT [,L, =(dInl, /dr)’

tu

The effect of turbulence 1s similar to that of neoclassical polarization
current. It would change the onset threshold of NTMs.
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The onset of NTMs

The onset threshold of NTMs

~ 2

-1
onset , w d 1 ow, A
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Po ( j r [ W, + w / wpol G W { w’ ﬂ seed pol
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» The effect of turbulence-driven current on onset threshold of NTMs

depends on the ratio Wa. / Wpo-

» The effect depends on the direction of turbulence intensity gradient.
> For typical values of tokamak, Wi, / W, ~ O(1),

namely the effect of turbulence-driven current is significant.
If >0, it enhances the onset threshold of NTMs.

If o<0, itreduces or overcomes stabilizing effect of neoclassical

polarization current, and can trigger NTMs.
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The onset of NTMs Nucl. Fusion 59, 026009(2019)

For the typical tokamak, like DIII-D, R, =1.7m,a=0.61m,B=1.6T,
Given T, =T, =2keV,n, =2x10"m>,rA'=-3,q, =2,s =1, =0.5,L, =| L, |= 0.5a,
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Figure 1. The dependence of 3™ on Weeeq/Wpot for Ly < 0 and L; > 0, respectively.

»For L <0, w, increases with I, namely the turbulence-driven
current plays a stabilizing role, and enhances the onset threshold.
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The onset of NTMs Nucl. Fusion 59, 026009(2019)

For the typical tokamak, like DIII-D, R, =1.7m,a=0.61m,B=1.6T,
Given T, =T, =2keV,n, =2x10"m>,rA'=-3,q, =2,s =1, =0.5,L, =| L, |= 0.5a,
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Figure 1. The dependence of 3™ on Weeeq/Wpot for Ly < 0 and L; > 0, respectively.

»For L,>0,4" w.decreases with/,, namely the effect is destabilizing,

and cancels the stabilizing effect of neoclassical polarization current.
It leads to a reduction of onset threshold and can trigger NTMs.
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Summary and Discussion

€ A new mechanism of turbulence-driven current on the onset
threshold of NTMs 1s provided. The turbulence-driven current
modifies Ohm’s law, and alters the parallel current in the 1sland.

@ The effect of turbulence-driven current on NTMs is comparable to
that of neoclassical polarization current.

@ The onset threshold can be affected significantly by turbulence.

@ The effect depends on the direction of turbulence intensity gradient
at the resonance surface and the amplitude of turbulence.

@ The triggering of NTMs by turbulence depends on type of
turbulence and the symmetry breaking mechanism of turbulence
spectrum.

€ When the turbulence intensity gradient is positive, it may explain
the recent experimental results in DIII-D. It also implies NTMs can
appear without noticeable MHD events.
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Summary and Discussion

@ Here, we focus on the effect of turbulence-driven current on NTMs.
The feedback effect of NTMs on turbulence is not studied, such as
the modification of equilibrium profile by NTMs.

@ 1t is valid for small island.

@ It needs experiments to justify, while the experiments are hard to
diagnose.

@ 1t also needs a detailed simulation.
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Thank you for your attention!
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