

The tungsten target erosion and W impurity transport during external impurity seeding

<u>Chaofeng Sang^{a*}</u>, Q. R. Zhou^a, Y. L. Wang^a, X. L. Zhao^a, L. Wang^b □ G. S. Xu^b □ R. Ding^b, D. Z. Wang^a

^aSchool of Physics, Dalian University of Technology

^bInstitute of Plasma Physics, Chinese Academy of Sciences

2021.03.26

*sang@dlut.edu.cn

Background and motivation

- Tungsten (W) has been chosen as the divertor plasma-facing materials (PFMs) for ITER.
- > To solve the power exhaust problem, EAST will upgrade its lower divertor to use W material.
- > The W target erosion and W impurity accumulation is the key issue.

Divertor requirements:

- ➢ Heat flux to the target < 10 MW/m²
- $> T_e < 10$ eV includes the far SOL at the target
- > W impurity control and efficient particle removal

The SOLPS and DIVIMP are applied to the modeling

Tungsten PFM is used

SOLPS

 $> P_{SOL} = 4.0 MW$

Simulation species: D⁰, D⁺, Ar⁰- Ar¹⁸⁺/Ne⁰-Ne¹⁰⁺

Radial transport coefficients:

 $D=0.3 \text{ m}^2/\text{s}$ $\chi = 1.0 \text{ m}^2/\text{s}$

Drifts are not included by default.

Sang et al., Nucl. Fusion (2021)
Zhou et al., Nucl. Mater. Energy (2020)

C. F. Sang/10th US-PRC MFC Virtual Workshop/March 22-26, 2021

Tungsten divertor requires external impurity to enhance the power radiation

Power scan: maintaining $n_{D+,CEI} = 6.0e19 \text{ m}^{-3}$, high P_{SOL} makes it exceed the tolerance of W target easily **Density scan**: fixing $P_{SOL} = 4MW$, detachment is not observed even when $n_{e,sep} \sim 4e19 \text{ m}^{-3}$

Investigation of the gas seeding location on the divertor/SOL plasma

- The divertor with W target material is simulated.
- Two external impurity gas seeding locations are compared: puffing at SOL and PFR.
- > The puffing rate scan with argon has been done.
- The power crossing the core-edge interface (CEI)
 P_{SOL} = 4 MW, n_{D+} at CEI is fixed to 4.5e19 m-3.
 (ne_{sep,omp} ~ 1.5e19 m-3)

The argon seeding scan shows difference between two puffing locations on the plasma

Argon seeding scan in two locations shows

- Flux rollover: puffing at SOL achieves detachment with smaller seeding rate (1.1 vs 1.3e20 atoms/s).
- Zeff at the core edge: puffing at SOL has better impurity screening.

6

The profiles at the outer target shows significant differences between two seeding locations

For the same Ar gas seeding rate (1.3e20 atoms/s)

> Te and q of the seeding at SOL is much lower.

> The Ar impurity density are totally different.

C. F. Sang/10th US-PRC MFC Virtual Workshop/March 22-26, 2021

The smaller Ar ion flux from the outer target to the upstream reduces Zeff of puff-SOL case

- The direction of Ar flux at the SOL is from outer target to OMP (negative value).
- Puff-SOL case has smaller Ar ion flux, and better impurity screening.

Larger P_{SOL} requires higher seeding rate to dissipate energy

Argon seeding at SOL

- > Both T_{et} and q_{dep} fall first gradually, then remarkably.
- ➤ The sudden drop occurs at $T_{et} \sim 130$ eV, due to more than one order of magnitude increment of L_Z as T_e raises higher than ~ 130 eV.
- > To reduce T_e at OSP below 5 eV, the required Ar seeding rate is 1.5 and 3.0×10^{20} argon atoms/s for $P_{SOL} = 4$ MW and 10 MW.

C. F. Sang/10th US-PRC MFC Virtual Workshop/March 22-26, 2021

The comparison between Ne and Ar seeding rate scan shows significant difference on divertor plasma

- Detachment requires much smaller Argon seeding rate than that of neon. 1.1×10²⁰ Ar atoms/s vs 2.6×10²⁰ Ne atoms/s
- Argon has more power radiation efficiency than that of neon

 T_{et}^{OSP} and $P_{rad,Div}$ are used to represent divertor condition, Z_{eff} represents the influence on the core plasma.

 Smaller T^{OSP}_{et} corresponds to larger Z_{eff}.
 When T^{OSP}_{et} < 20 eV, Ne seeding leads to larger Z_{eff} than Ar seeding with same T^{OSP}_{et}

C. F. Sang/10th US-PRC MFC Virtual Workshop/March 22-26, 2021

10

For similar total power radiation, the Ar seeding has smaller Zeff in the core than that of the Ne seeding

W divertor erosion shows the disadvantage of Ar seeding compared to Ne seeding

The correlations between the peak Γ_W at outer target and puffing rate, T_{et}^{OSP} , and $P_{rad,OD}$

- > As seeding rate increases, Γ_W first increases, then decreases.
- > Much larger Γ_W with Ar than that with Ne for the same T_{et}^{OSP} or $P_{rad,OD}$.
- $T_{et}^{OSP} < 10 \text{ eV with Ne or } < 5 \text{ eV with Ar should be satisfied to eliminate W erosion}$ C. F. Sang/10th US-PRC MFC Virtual Workshop/March 22-26, 2021

Argon seeding leads to more W impurity accumulated in the core plasma region than Ne (DIVIMP modeling)

- Ar leads to higher W density in the core region than Ne with insufficient seeding rate (i.e. < 1.6×10²⁰ argon atoms/s).
- For same T_{et}^{OSP} , Ar leads to more W impurity in the core.

13

Conclusions

14

- 1. Argon seeding at SOL location is better than seeding at PFR by considering the divertor power dissipation and impurity screening.
- 2. Larger P_{SOL} requires higher seeding rate to dissipate energy
- 3. The advantage of Ar impurity is the higher power radiation efficiency and better divertor impurity screening. While the disadvantage of Ar is the stronger core radiation.
- 4. Ar seeding causes more serious target erosion and core plasma contamination problem than that of Ne seeding.

Thanks for your attention!