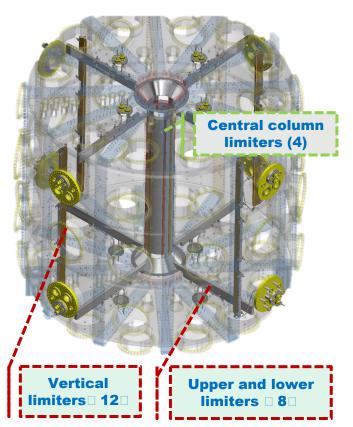


ENN Fusion R&D Mission — Compact Clean Commercial (Low Unit Cost) Power. But How? BORON-11 PROTON CARBON-12 **Compact Simplified Protect Environ't** Fusion It's Closer Than You Think **Aneutronic Tritium-free** tokamak **ENN** Q_{DT}=1 静态 **Low Unit** Cost ITER 氘氚燃烧 **Mass Produced** ~6c/kW-hr (310 USD)

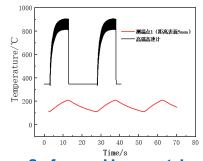
EXL-50 facility layout


Main design parameters of EXL-50

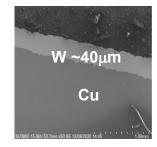
Parameters	Values		
Plasma current	≤0.5 MA		
Thermal ions major radius R _i	0.48 m		
Energetic electron cloud radius	0.7m		
Thermal ions aspect ratio (LCFS)	1.5		
Energetic electron cloud aspect ratio	1.3		
Toroidal magnetic field (at R _i)	≤0.5T		
Elongation	≈2		
Thermal ions temperature	≤1 keV		
Energetic electron temperature	0.23 MeV		
Electron density	2 x10 ¹⁹ /m ³		
ECRH power (28GHz)	1.6 MW		
LHCD power	1 MW		
ICRH power	1 MW		
NBI power	1.5 MW		
Discharge TF flattop duration	≤5 s		

- > No CS coil
- > No divertor
- > No first wall
- > Fully welded vacuum vessel
- > Drive plasma current with ECRH

Tungsten-coated copper limiters



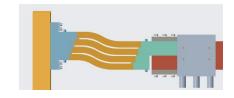
A. Central column limiter


B. A lower limiter

e-Beam test sample

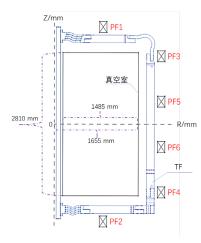
Surface and base metal temperatures of NO.640-642


Section observation of tungsten coating by EM


Tungsten coating has been shown to survive incident fluxes of 10 MW/m² for 1,000 cycles in testing SWIP, showing shallow surface cracks.

Magnet coils

Parameter	Value		
Turn	12		
Current	100 kA		
Magnetic field	0.41 T (at		
	R=0.58m)		
Materials	CuZr,CuAg		
Weight	13 t		
Cooling	water		
Ripple	<1.6% (at		
	R=1.51m)		
Temperature rise	70 °C		
Pulse flattop time	5 s		

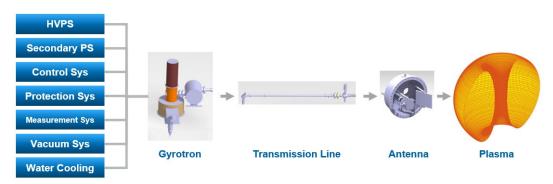


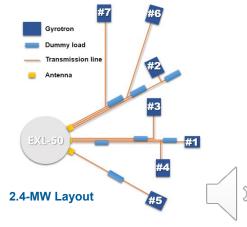
Central column flexible joint

Poloidal field coils

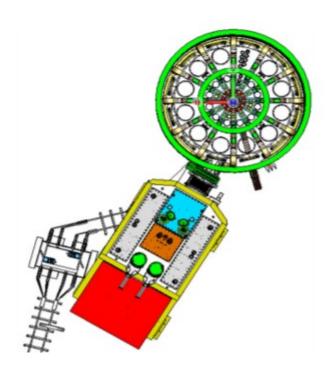
Coils	R,m	Z,m	dR,m	dZ,m	Turns	Current,kA
PF1 PF2	1.908	± 0.963	0.147	0.224	22	17.3
PF3 PF4	1.335	± 2.107	0.147	0.224	22	17.3
PF5 PF6	0.445	± 2.107	0.147	0.224	22	17.3

2 X 2.45-GHz/15kW/CW systems


- Produced first plasma in 2019.
- ECRH startup to ~7kA plasma current at low field.
- Used for discharge cleaning, ECR boronization, and pre-ionization at full field.

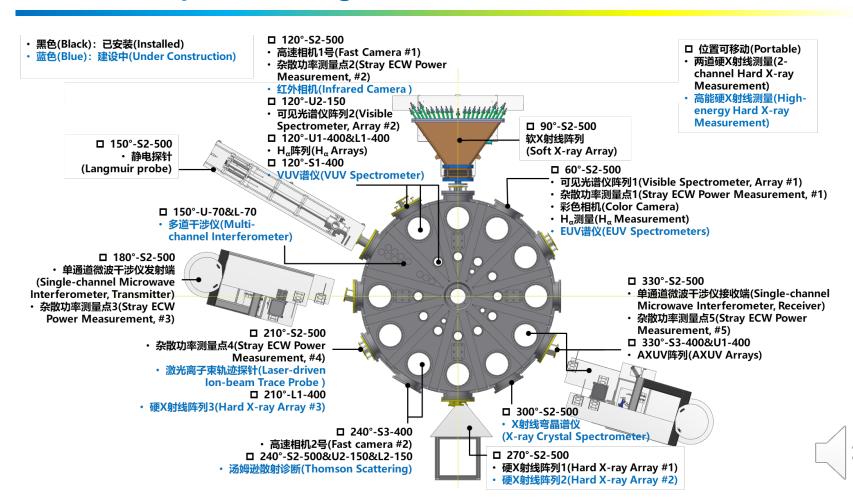

1 X 28-GHz/50kW/30s, 2 X 28-GHz/400kW/5s systems

- Electron Cyclotron Resonance Heating (ECRH) alone is used for plasma start-up, heating and current drive during 2020.
- Consist of gyrotron, S/C magnet, MOU, transmission line, antenna, high-voltage power supplies, control and protection system, vacuum, monitor and protection, water cooling systems.
- Installed systems delivered up to ~300kW/4.5s.
- Three antenna systems: toroidal injection angle from -44°to 48°(midplane). Upper antenna injection angle from 0°to 30°(vertical), and from 15° to -30°(toroidal).
- A total gyrotron power of 2.4 MW is planned.



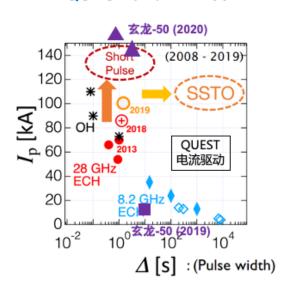
Architecture of the ECRH System

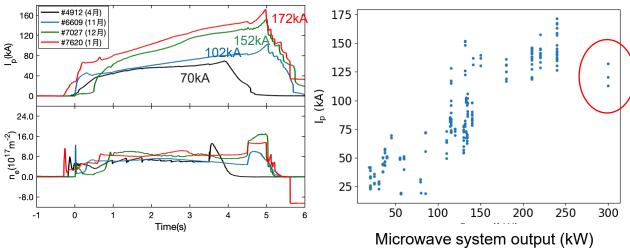
1.5MW neutral beam injection system


Top View of NBI on EXL-50

Main Parameters of 1.5MW NBI for EXL-50 Tokamak

- lon source type: Multi-cusp bucket ion source;
- Number of grids: 3;
- Number of ion sources: 2;
- Acceleration parameters: 50kV/40A/5s;
- Beam Convergence angle: 2×3.2°;
- Grid convergence angle: 178°;
- Beam focal length: 5366mm;
- Neutralization efficiency: > 55%;
- Proton ratio: > 70%;
- Pumping speed: 1×10⁶ l/s;
- Residual ion deflection: magnetic deflection;
- Injection angle: 55.3 °;
- Number of filaments: 16




Present and planned diagnostics on EXL-50

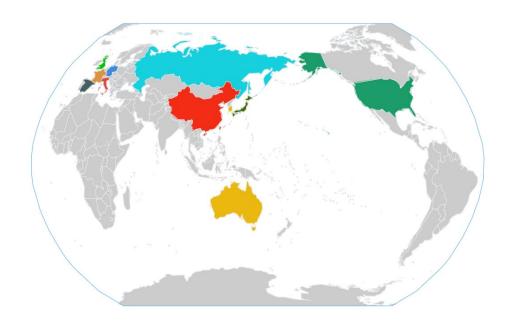
2020 progress in driven current

QUEST and EXL-50

- Transient 172kA, quasi-stationary 140-150kA
- A new record, as far as we know
- Power absorbed by the plasma unknown

ENN Fusion Technology R&D Center (2021)

Founding time	Our people	Honor
Feb. 2018	Around 100 researchers with 40% holding PhD degree	Authorized as Hebei Key Laboratory of Compact Fusion



Cooperation, Contribution, Moving Fusion Energy R&D Forward

- Promote an efficient and agile p-B fusion R&D effort, be a member of fusion community
- Learning by doing, drawing from expertise in fusion, high-energy particles, laser, materials
- Engage experts from schools, laboratories, industries, power companies, private enterprises

"Develop Fusion Energy, Benefit Mankind for Generations!"

