

Whole-plasma simulation of self-consistent turbulent transport in a laboratory magnetosphere

Bo Li

Beihang University

In collaboration with Barrett Rogers (Dartmouth) and Mike Mauel (Columbia)

10th US-PRC MFC Workshop March 26, 2021

≻Background

Simulations of interchange mode and entropy mode of a dipole-confined plasma based on drift reduced model

Weike Ou, *et al*, PRE **101**, 021201(R) (2020)

➢Conclusion

Planetary magnetosphere

- Unique confinement in a dipole magnetic field
- Centrally peaked profile of density and pressure
 - Gold(1959) $p \sim 1/\delta V^{\gamma}$
 - Melrose(1967) $\langle n \rangle \sim 1/\delta V$
- Possibility of achieving controlled fusion A. Hasegawa, L. Chen, and M. Mauel, Nuclear Fusion (1990)

Earth(up) Jupiter (down) magnetosphere

Dipole-confined plasma device

CTX	LDX	RT- 1	DREX
1990	2004	2006	2021
Columbia University	MIT	University of Tokyo	Harbin Institute of Technology

Two Laboratory Magnetospheres

Levitated Dipole Experiment (LDX) (1.2 MA · 0.41 MA m² · 550 kJ · 565 kg) Nb₃Sn · 3 Hours Float Time 24 kW ECRH

Ring Trap 1 (RT-1) (0.25 MA · 0.17 MA m² · 22 kJ · 112 kg) Bi-2223 · 6 Hours Float Time 50 kW ECRH

Mauel, APS, 2015

Observation in laboratory dipole plasma

- Dominant instability
 - electrostatic
 - $k_{\parallel} = 0$

• Global convective structure

Mauel, APS, 2014

Drift reduced model

$$\frac{\partial n}{\partial t} + \nabla \cdot n \boldsymbol{v}_e = 0$$

$$\nabla \cdot \boldsymbol{J} = \nabla \cdot en(\boldsymbol{v} - \boldsymbol{v}_e) = 0$$

$$E + v_e \times B = -\frac{1}{en} \nabla p_e$$
$$\frac{\partial p_e}{\partial t} + \nabla \cdot (p_e v_E) = -(\gamma - 1) p_e \nabla \cdot v_E + \gamma \frac{2}{eB} \mathbf{b} \times \kappa \cdot \nabla (p_e T_e)$$

$$\boldsymbol{J} = \frac{1}{B^2} \boldsymbol{B} \times \nabla p_e + \frac{nm_i}{B^2} \boldsymbol{B} \times \left(\frac{d\boldsymbol{v}_E}{dt}\right)$$

Dipole geometry

- Dipole magnetic field $\boldsymbol{B} = \nabla \boldsymbol{\varphi} \times \nabla \boldsymbol{\psi} = \nabla \boldsymbol{\chi}$
- Normalization
 - Magnetic flux $\psi = x\psi_0$
 - Azimuthal angle $\varphi = y$
 - Time scale $\omega_0 = \rho_\star \frac{c_s}{L_0} \Box \rho_\star = \rho_i / L_0$
 - Spatial scale L_0
- Boundary conditions
 - Fixed boundary condition in x.
 - Periodic Boundary Conditions in y.

- Flux tube average $\langle A \rangle \equiv \frac{1}{\delta V(\psi)} \int \frac{A \, d\chi}{B^2}$
- Flux tube volume $\delta V(\psi) = \int \frac{d\chi}{B^2} \approx 0.91 \frac{M^3}{\psi^4}$

Normalized Simulation Model

$$\frac{\partial N}{\partial t} - \frac{\partial}{\partial y} \left(N \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial x} \left(N \frac{\partial \Phi}{\partial y} \right) = -4x^{4\gamma-5} \frac{\partial G}{\partial y}$$
$$\frac{\partial G}{\partial t} - \frac{\partial}{\partial y} \left(G \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial x} \left(G \frac{\partial \Phi}{\partial y} \right) = -4\gamma x^{4\gamma-5} \frac{\partial}{\partial y} \left(\frac{G^2}{N} \right)$$
$$\left(\frac{\partial w}{\partial t} \right) - \frac{\partial}{\partial y} \left(w \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial x} \left(w \frac{\partial \Phi}{\partial y} \right) = -4x^{4\gamma-5} \frac{\partial G}{\partial y}$$
$$w = \rho_{\star}^2 \left[\frac{\partial}{\partial x} \left(0.7x^{-2}N \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(0.6x^{-4}N \frac{\partial \Phi}{\partial y} \right) \right]$$

Define entropy function $G = p\delta V^{\gamma}$ and flux-tube particle number $N = n\delta V$

Nonlinear Simulation Results

Centrally peaked profile in a nonlinear state

Time-averaged profiles of $\Box \ a \Box$ entropy $G \Box \ b \Box$ particle number $N \Box \ c \Box$ pressure $p \Box \ d \Box$ density $\langle n \rangle$.

$$\delta V \sim x^{-4}$$

Root-mean-square (rms) of $\Box a \Box \widetilde{N} \Box \widetilde{G}$ and $\Box b \Box \widetilde{\Phi}$ across radius. $\Box c \Box$ Time-averaged fluctuation spectra of $\Phi \Box N \Box G$ in a nonlinear quasistationary state.

Inward transport of particles

- Global fluid simulations with flux-tube averaged model in dipole geometry.
- Turbulent convection of plasmas confined in a dipole field is characterized by global convective cells.
- Large-scale electrostatic potential fluctuations cause turbulent inward particle pinch in dipole plasmas.
- Centrally peaked density and pressure profiles are marginally stable to both interchange and entropy modes.