

Analysis of energetic particle driven MHD modes on EAST

Yawei Hou¹, Ping Zhu^{2,3*}, Charlson C. Kim⁴, Zhihui Zou¹, Youjun Hu⁵, Xingting Yan¹, Wenzhe Mao¹, Jinfang Wang⁵ * zhup@hust.edu.cn

1 University of Science and Technology of China, Hefei, Anhui 230026, China
 2 Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
 3 University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
 4 SLS2 Consulting, San Diego, California 92107, USA
 5 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China

10th US-PRC Magnetic Fusion Collaboration Workshop (online), 23-27 Mar., 2021

- Kinetic-MHD model in NIMROD
- Functions & progress of AWEAC
- Fishbone/BAE/TAE on EAST
- Conclusions and future works

USTC

Trapped EP Precession frequency、Core-ion diamagnetic frequency、 Passing EP Radial drift velocity/circulating frequency

Fishbone frequency/velocity;

EP toroidal velocity ~~ AEs phase velocity.

 Heating efficiency -> long pulse steady-state operation;
 Reduction of EP destruction to FW -> long-lived component;
 α particle heating -> selfsustained burning plasma.

Heating & fusion -> energetic particle

Fishbone -> EP loss ~ 10% Alfven Eigenmodes-> EP loss ~ 70%

Fishbone mode

McGuire et al PRL 1983

Trapped energetic ion Precession frequency

Chen et al PRL 1984

Core-ion diamagnetic motion

Coppi et al PRL 1986

Circulating energetic ion Betti et al PRL 1993 Finite radial drift

Circulating energetic ion Circulating frequency

Wang et al PRL 2001

4

Superthermal electron

Wong et al PRL 2000 Macor et al PRL 2009

Energetic ion and electron can interact with kink mode to form fishbone.

TAE: Toroidal Alfven Eigenmode

Wong et al PRL 1991

TAE was observed by Mirnov coil and beam emission spectropy with NBI on TFTR.

BAE: Beta induced Alfven Eigenmode

BAE frequency is roughly half of TAE and decreases with β_N based on DIII-D experiments.

- Kinetic-MHD model in NIMROD
- Functions & progress of AWEAC
- Fishbone/BAE/TAE on EAST
- Conclusions and future works

Kinetic-MHD model in NIMROD

USTC

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \left(n \boldsymbol{V} \right)_{\alpha} = \nabla \cdot \boldsymbol{D} \nabla n_{\alpha}$$

$$\rho\left(\frac{\partial \boldsymbol{V}}{\partial t} + \boldsymbol{V} \cdot \nabla \boldsymbol{V}\right) = \boldsymbol{J} \times \boldsymbol{B} - \nabla p$$

 $+\nabla \cdot \rho v \nabla V - \nabla \cdot \mathbf{\Pi} - \nabla p_h$

$$\frac{n_{\alpha}}{\Gamma - 1} \left(\frac{\partial \boldsymbol{T}_{\alpha}}{\partial t} + \boldsymbol{V}_{\alpha} \cdot \nabla \boldsymbol{T}_{\alpha} \right) = -p_{\alpha} \nabla \cdot \boldsymbol{V}_{\alpha}$$

 $-\nabla \cdot \boldsymbol{q}_{\alpha} + \boldsymbol{Q}_{\alpha} - \boldsymbol{\Pi}_{\alpha} : \nabla \boldsymbol{V}$

- Resistive MHD
- Hall and 2-fluid
- Braginski and beyond closures
- Energetic particles

$$\frac{\partial B}{\partial t} = \nabla \times \boldsymbol{E} + \kappa_{divb} \nabla (\nabla \cdot \boldsymbol{B})$$
$$\boldsymbol{J} = \nabla \times \boldsymbol{B}$$
$$\boldsymbol{E} = -\boldsymbol{V} \times \boldsymbol{B} + \eta \boldsymbol{J}$$

$$+\frac{m_e}{n_e e^2} \left[\frac{m_e}{\mu_0} \left(\boldsymbol{J} \times \boldsymbol{B} - \nabla \boldsymbol{p}_e \right) +\frac{\partial \boldsymbol{J}}{\partial t} + \nabla \left(\boldsymbol{J} \boldsymbol{V} + \boldsymbol{V} \boldsymbol{J} \right) \right]$$

Sovinec et al JCP 2004; Kim et al CPC 2004

Kinetic-MHD model in NIMROD

• Momentum equation modified by hot particle pressure tensor:

$$\rho \left(\frac{\partial V}{\partial t} + V \cdot \nabla V \right) = J \times B - \nabla P_b - \nabla \cdot P_h + \nabla \cdot \rho \nabla \nabla V - \nabla \cdot \Pi$$

Energetic particle effect Switch off

- Quasi-neutrality $\Rightarrow n_e = n_i + n_h$
- Steady state equation $J_0 \times B_0 = \nabla p_0 = \nabla p_{b0} + \nabla p_{h0}$
 - $-\nabla_{b0}$ is scaled to accommodate hot particles
 - Scalar pressure requires isotropic velocity distribution
 - Alternative J_h current coupling possible

Kink mode driven by slowing down EP

USTC

Initial slowing down EP distribution

n=1 anisotropic pressure contour mainly contributed by trapped particles

Benchmarked with M3D/M3D-k

TAE driven by Maxwellian EP using NIMROD

USTC

Transition from TAE to EPM occurs as EP β_f increases.

EAST shot #48916 & energetic particle model in NIMROD

Hou et al POP 2019

Energetic particles D+ is set to be slowing down distribution

$$f_{h} = \frac{P_{0} \exp(\frac{g \rho_{\parallel} - \psi_{p}}{c \psi_{0}})}{\varepsilon^{3/2} + \varepsilon_{c}^{3/2}}$$
$$g = RB_{\phi} \qquad \rho_{\parallel} = \frac{mv_{\parallel}}{qB}$$

Critical energy $\mathcal{E}_c = 37.3 keV$

Beta fraction $\beta_h / \beta = 0.2835$ EP stored energy:36kJ

12

Continuum & mode structure - n=2

- Kinetic-MHD model in NIMROD
- Functions & progress of AWEAC
- Fishbone/BAE/TAE on EAST
- Conclusions and future works

Main functions & progress of AWEAC

USTC

AWEAC: Alfven Wave Eigen-Analysis Code

□ Main functions:

- General tokamak geometry (asymmetric D shape); (achieved)
- Read equilibrium data (EFIT, TOQ, NIMEQ, etc.), output the characteristic parameters and visualizations; (achieved)
- Output the Alfven continuum (BAEs, TAEs, EAEs,...) with different mode number; (achieved)
- Achieve eigenmode growth rate and different damping rates, similar to NOVA/NOVA-k; (under development)
- Density effect due to fueling; flow effect; (under preparation)
- Platform for eigen-analysis in tokamaks. (future goal)

Ideal MHD eigenmode equations

USTC

• Equilibrium eqs.

$$\mathbf{J} \times \mathbf{B} = \nabla P$$
$$\nabla \times \mathbf{B} = \mathbf{J}$$
$$\nabla \cdot \mathbf{B} = \mathbf{0}$$

• Linearized ideal MHD eqs.

$$p_{1} + \boldsymbol{\xi} \cdot \nabla P + \gamma_{s} P \nabla \cdot \boldsymbol{\xi} = 0$$

$$\rho \omega^{2} \boldsymbol{\xi} = \nabla p_{1} + \mathbf{b} \times \nabla \times \mathbf{B} + \mathbf{B} \times \nabla \times \mathbf{b}$$

$$\mathbf{b} = \nabla \times (\boldsymbol{\xi} \times \mathbf{B})$$

• Ideal MHD eigenmode eqs.

$$\nabla \psi \cdot \nabla \begin{pmatrix} P_1 \\ \xi_{\psi} \end{pmatrix} = C \begin{pmatrix} P_1 \\ \xi_{\psi} \end{pmatrix} + D \begin{pmatrix} \xi_s \\ \nabla \cdot \xi \end{pmatrix}$$
$$E \begin{pmatrix} \xi_s \\ \nabla \cdot \xi \end{pmatrix} = F \begin{pmatrix} P_1 \\ \xi_{\psi} \end{pmatrix}$$

• Where

$$P_{1} = p_{1} + \mathbf{b} \cdot \mathbf{B}$$
$$\xi_{s} = \boldsymbol{\xi} \cdot (\mathbf{B} \times \nabla \psi) / |\nabla \psi|^{2}$$
$$\xi_{\psi} = \boldsymbol{\xi} \cdot \nabla \psi$$

Cheng et al POP 1986, Hu et al POP 2014⁶

Alfven wave continuum equations

USTC

• Ideal MHD Alfven continuum eq.

$$E\begin{pmatrix}\xi_{s}\\\nabla\cdot\xi\end{pmatrix} = \begin{pmatrix}E_{11} & E_{12}\\E_{12} & E_{22}\end{pmatrix}\begin{pmatrix}\xi_{s}\\\nabla\cdot\xi\end{pmatrix} = 0$$

• Where

$$E_{_{11}}^{a} = -\mu_{0}^{-1}\mathbf{B}_{0}\cdot\nabla\left(\frac{\left|\nabla\psi\right|^{2}\mathbf{B}_{0}\cdot\nabla}{B_{0}^{2}}\right)$$

$$E_{12}^{a} = -2\gamma P_{0}\kappa_{s},$$

$$E_{21}^{a} = 0,$$

$$E_{22}^{a} = \frac{\gamma P_{0}}{-\mu_{0}\rho_{0}}\mathbf{B}_{0}\cdot\nabla\left(\frac{\mathbf{B}_{0}\cdot\nabla}{B_{0}^{2}}\right)$$

• Slow sound approximation

$$\frac{E_{22}^a}{E_{22}^b} = \frac{\gamma\beta/2}{1+\gamma\beta/2}$$

$$E = E_a + \omega^2 E_b$$
$$E_a \begin{pmatrix} \xi_s \\ \nabla \cdot \xi \end{pmatrix} = -\omega^2 E_b \begin{pmatrix} \xi_s \\ \nabla \cdot \xi \end{pmatrix}$$

$$E_{11}^{b} = -\frac{\rho_{0} |\nabla \psi|^{2}}{B_{0}^{2}} \quad \kappa = \mathbf{b}_{0} \cdot \nabla \mathbf{b}_{0}$$

$$E_{12}^{b} = 0, \qquad = (\nabla \times \mathbf{b}_{0}) \times \mathbf{b}_{0}$$

$$E_{21}^{b} = \kappa_{s} \quad \kappa_{s} = 2\mathbf{\kappa} \cdot \frac{\mathbf{B}_{0} \cdot \nabla \psi}{B_{0}^{2}}$$

$$\beta \ll 1,$$
$$E_{22}^a \to 0$$

Hu et al POP 2014; Deng et al NF 2012

Benchmark of AWEAC with GTAW

USTC

EAST shot #38300

- Kinetic-MHD model in NIMROD
- Functions & progress of AWEAC
- Fishbone/BAE/TAE on EAST
- Conclusions and future works

EP driven MHD modes with varied q₀

20

EP driven MHD modes with varied q₀

Kink/fishbone mode study of EAST shot #70187

Kink mode increases first and then decreases as q_0 increases.

Kink/fishbone mode study of EAST shot #70187

Fishbone mode is suppressed as β_f increases.

- Kinetic-MHD model in NIMROD
- Functions & progress of AWEAC
- Fishbone/BAE/TAE on EAST
- Conclusions and future works

Conclusions & future works

JSTC

Conclusions:

- Kink/fishbone mode & TAE simulation using NIMROD has been benchmarked with both eigenvalue codes and initial value codes for both circular and EAST tokamaks.
- Transition from fishbone to BAE/TAE occurs as q₀ increases for EAST shot #38300;
- BAE is hard to be excited by EP for flat q profile with q_0 less than 1.

□ Future works:

- Simulations of fishbone and AEs on EAST/HL-2A based on experiment parameters, with energetic ions;
- Nonlinear simulations of EP driven AEs or MHD instabilities on EAST/HL-2A/ ITER/CFETR.

Thank you!

Suggestions and collaborations are welcome! arvayhou@ustc.edu.cn