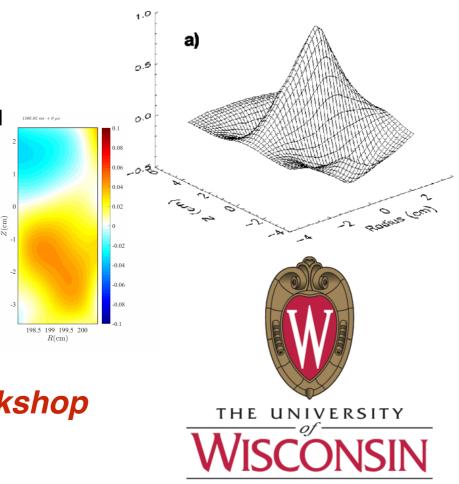
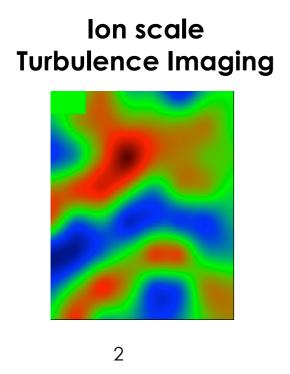
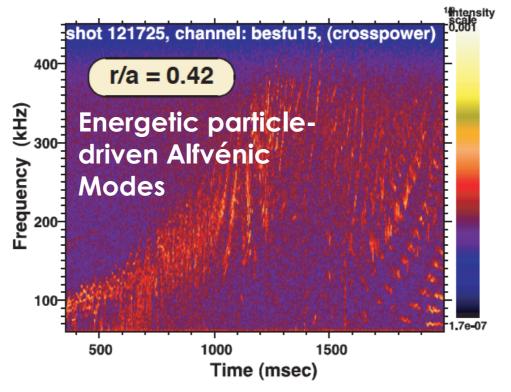
A Collaboration between the University of Wisconsin-Madison and SWIP: Developing Fluctuation Diagnostics for Turbulence Physics*

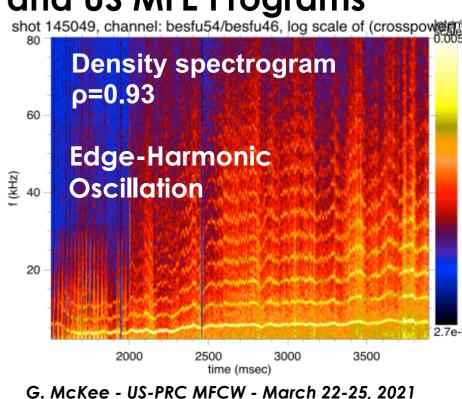

G. McKee¹, Z. Yan¹, M. Xu², D. DenHartog¹, B. Geiger¹, K. Jaehnig¹, R. Ke², L. Morton¹, X. Qin¹, T. Wu²

¹University of Wisconsin-Madison, Wisconsin, USA ²Southwestern Institute of Physics, Chengdu, China

*Supported by SWIP-CNNC Contract


US-PRC
Magnetic Fusion Collaboration Workshop
March 22-25, 2021




Objectives and Goals for a Collaboration on Fluctuation Measurements for Turbulence & Instability Research

- Goal: Collaborative research through advanced measurement capability
- Wide range of instability phenomena impact tokamak plasma performance
 - Core turbulence characterization: model & simulation testing and validation
 - L-H transition dynamics (see Z. Yan later this workshop), H-mode Pedestal Instabilities
 - Energetic Particle modes: Alfven eigenmodes; Magnetic perturbation effects
 - Divertor/SOL-pedestal-core interactions; SOL heat flux width
- Work-force development through university collaboration
 - Graduate students & Postdoctoral researchers

Synergistic Diagnostic activities will benefit China and US MFE Programs

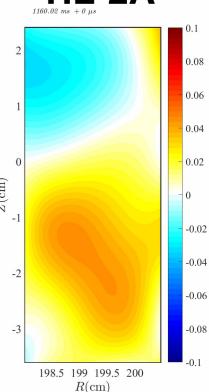
Highlights and Accomplishments

Deployed 32-channel BES Diagnostic System at SWIP:

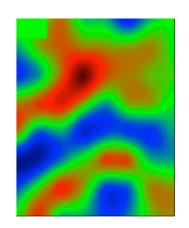
- Installed a 16-channel Modular BES Diagnostic System
- Installed a new 16-channel Integrated BES Diagnostic System
- Loaned a 16-channel NSTX-U BES Diagnostic (~1 year: 2018-2019)

Performed Experiments at HL-2A:

- Led turbulence experiment on ho^* scaling of turbulence on HL-2A
- Led experiment on L-H physics with applied magnetic perturbations
- Supported experiment on ExB Staircase turbulence + others


Multiple On-going Activities

- Jointly designing integrated multichannel Imaging BES for wide-field
 2D turbulence measurements
- Related diagnostic studies under consideration
- Ongoing research seminars at SWIP
- Graduate student/scientific staff research collaborations
 - Thesis research project for graduate student

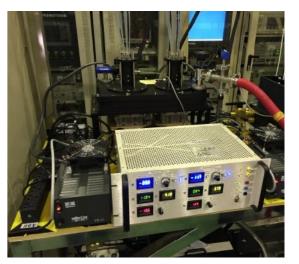

Multiple publications and conference presentations

Turbulence Imaging

DIII-D

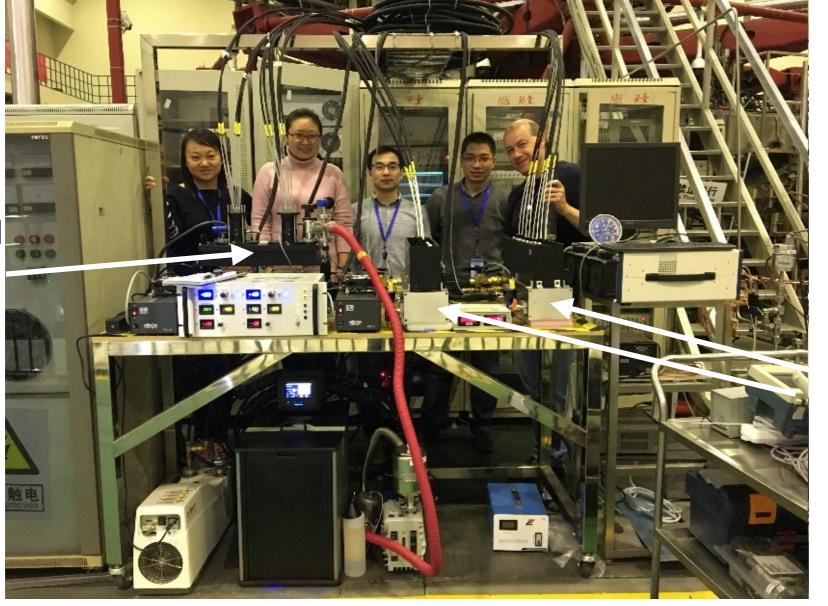
Diagnostic Development Activities

Diagnostic Development Activities


Implemented a Multiphase Approach to Developing BES on HL-2A & HL-2M

- Objective: Develop a high-performance, multichannel 2D Beam Emission Spectroscopy diagnostic for HL-2A and HL-2M tokamaks to measure low-k density fluctuations
 - $-\Delta R\sim 1$ cm, $\Delta Z\sim 1.2$ cm, f=2 MHz, 2D Imaging capability
- Phase 1: Build a modernized "NSTX-style" BES system
 - 28-channel modules, deployed in 2017
- Phase 2: Design and build a new, novel integrated system
 - 2 8-channel arrays; more economical (reduced \$/channel)
 - Thermo-electrically cooled; integrated optical system, single filter
 - Deployed March, 2019
- Phase 3: Design and build a large-scale imaging BES
 - 64-channel array-based advanced imaging BES diagnostic
 - Underway through multi-institute collaboration: UW, DIII-D, SWIP
 - Designed at UW; related DIII-D CXI diagnostic being built, tested
 - Seek to built SWIP-BES system later this year: deploy 2022-23

Phase 1


Phase 2

Phase 2 Integrated BES System Installed at SWIP for HL-2A

- An integrated BES diagnostic with 16 channels, 8 per module (*2) developed by UW for SWIP and is installed at HL-2A Tokamak
 - More economical system (\$/channel); improved performance

16-channel Integrated BES

Zheng Yan, Ting Wu, Yifan Wu, Rui Ke, George McKee at SWIP installing new systems

16-channel NSTX-U BES System (on loan)

Joint Diagnostic Development Effort for Fluctuation Diagnostics Offers Benefits to US & China FES Programs

- By combining development resources with SWIP and US programs (DIII-D, NSTX-U, potentially others), have designed integrated system
 - Comparable or better performance than previous generation of modular detectors
 - Simpler deployment at remote facilities
 - Smaller, more compact system
 - Only requires AC power, network linkages (no cryo, vacuum, coolant, external chiller)
 - Significantly lower costs-per-channel
- SWIP collaboration provided unique opportunity to pursue the integrated development path
- Benefits to diagnostic activities in US:
 - Charge eXchange Imaging deployment @DIII-D
 - BES-Expansion @DIII-D
 - UF-CHERS, SHS Improvements at DIII-D
 - Application to NSTX-U, +

64-Channel APD-based Integrated Imaging CXI System: Foundation for Phase 3 SWIP-BES Diagnostic

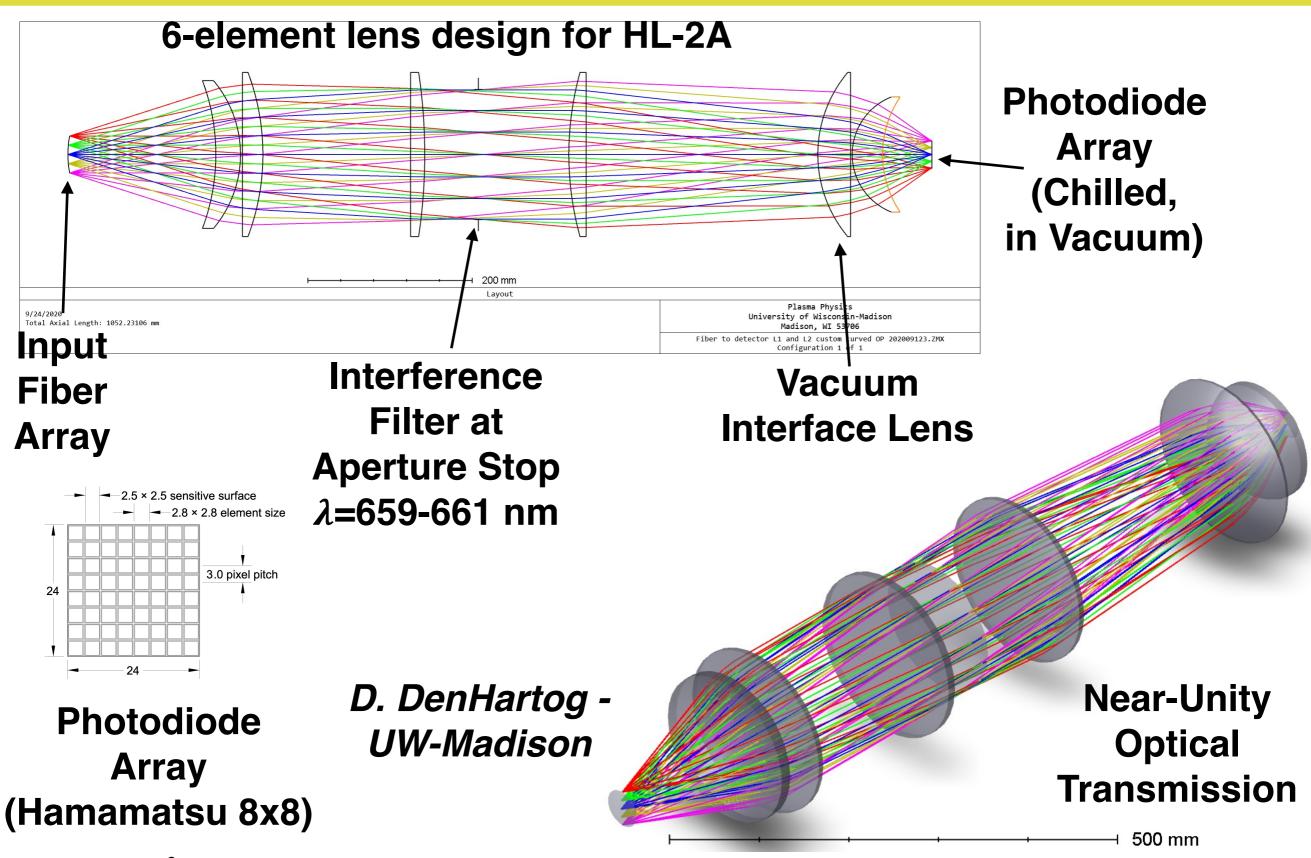
Input-Fibers

Cooled Detector Electronics Module

Thermoelectric Cooler

Closed-Loop Refrigerator

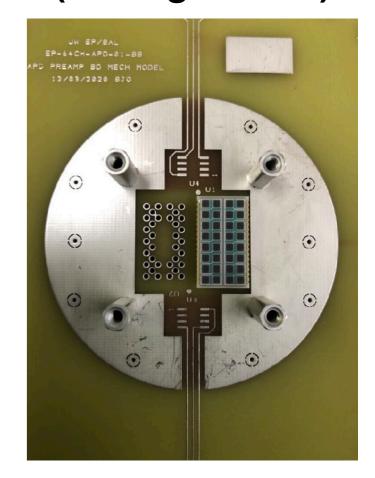
Optics Array


- Input Fibers
- Interference Filter
- Telecentric imaging

Power Supply

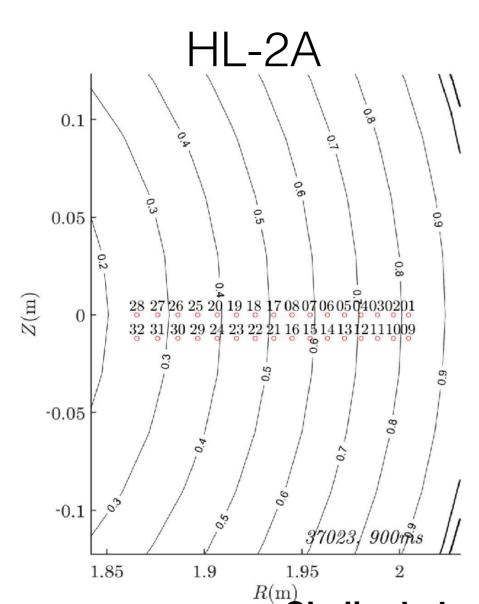

- High Voltage
- Power Supply
- Control interface

Vacuum Rough Pump

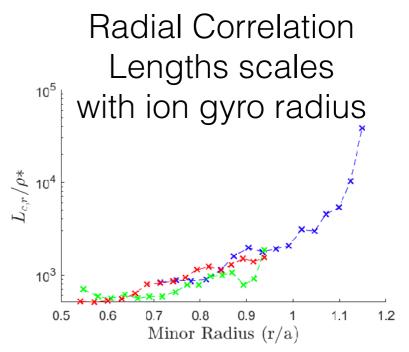

High-Throughput Telecentric Optical System Designed to Relay Input Fiber Light to Detector and Provide Spectral Filter

2D APD/PD Array and Pre-Amplifier Electronics Compressed into Single TEC-Cooled Detector Module

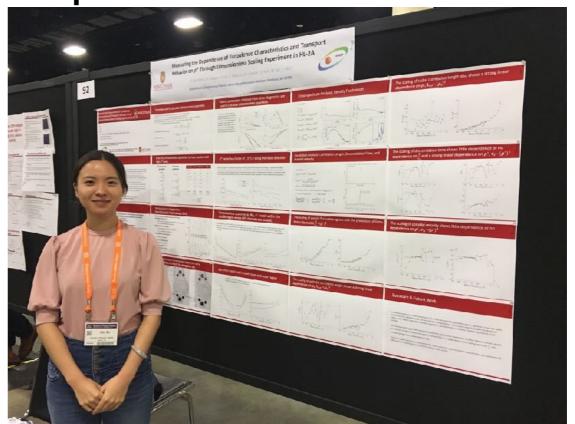
Multichannel Imaging Detector Array (@Image Plane)



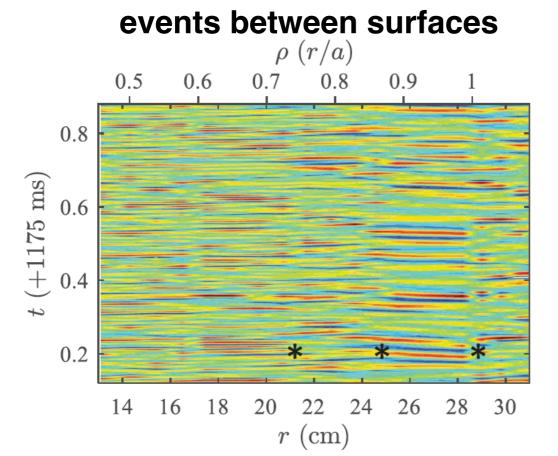
Scientific Projects


Scientific Research Activity

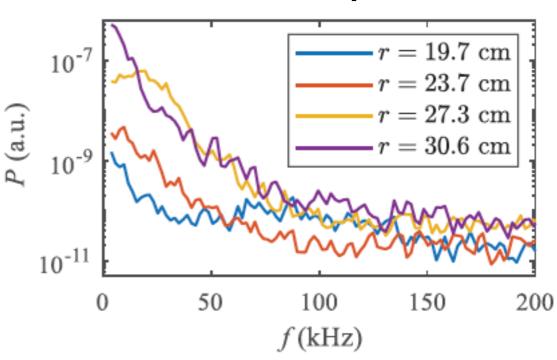
ρ^* Scaling of Turbulence Characteristics Measured at HL-2A


BES configured to measure radial profile of low-k density fluctuations

Density fluctuation amplitude, ñ/n scales with ρ^*


UW Graduate Student Xijie Qin presents results at APS-2019

Similar behavior to that observed at DIII-D


ExB Staircase Observed with BES in HL-2A

- Turbulence features consistent with theoretically predicted ExB shear layers observed
 - Tilted eddy structures and propagation velocity reversals of turbulence near profile T_e corrugation surfaces
 - Meso-scale transport events observed between corrugations
- Contributed to Ph.D. dissertation by Tsinghua student, Wenbin Liu

Meso-Scale fluctuation

BES Power Spectra at mulitiple radii

W. Liu, Y. Chen, R. Ke, G. McKee, Z Yan, G. Tynan et al., Phys. Plasmas 28, 012512 (2021)

UW-SWIP Personnel Exchanges Fostered New Research Activities

Graduate Student: Rui Ke (Xinghua University, now SWIP)

- Spent 6 months at DIII-D working with UW scientists (McKee, Yan)
- Learned diagnostics, supported experiments, analyzed data

Graduate Student: Yifan Wu (USTC-Hefei)

- Spent 12 months at DIII-D and at UW
- Assisted with Integrated BES development, Pedestal fluctuations in SH-Mode

Graduate Student: Xijie Qin (University of Wisconsin)

- Currently spending 9 months at SWIP (pandemic response!)
- Pursuing HL-2A experiment on intrinsic rotation-turbulence research
- Will continue at DIII-D in future

Post-doctoral researcher: Lucas Mortan (University of Wisconsin, TAE)

- Travelled to SWIP for loaned system installation

G. McKee, Z. Yan (UW) travel frequently to SWIP

- Diagnostic activities, experiments
- Presented multiple physics seminars

Multiple Scientific Publications Presentations Enabled Through Diagnostic Collaboration

- Initial beam emission spectroscopy diagnostic system on HL-2A tokamak
 - R. Ke, Y.F. Wu, G.R. McKee, Z. Yan, et al., Rev. Sci. Instrum. 89, 10D122 (2018)
- Simulation of neutral beam attenuation and its influence to beam emission spectroscopy diagnostic on HL-2A tokamak
 - Yifan Wu et al. Journal of Instrumentation, 2018, 13(10):P10026-P10026,
- Evidence of E × B staircase in HL-2A L-mode tokamak discharges
 - W. Liu, Y. Chen, R. Ke, G. McKee, Z Yan, G. Tynan et al., Phys. Plasmas 28, 012512 (2021)
- Development of a 32-channel Beam Emission Spectroscopy diagnostic based on Neutral Beam Injection on HL-2A tokamak
 - Yifan Wu et al. Fusion Engineering and Design, 2020, 156:111734
- Multi-scale interaction between tearing modes and micro-turbulence in HL-2A plasmas
 - Min Jiang et al., Plasma Science and Technology, 2020, 22(8):080501
- Edge-coherent oscillation providing nearly continuous transport during ELM mitigation by n = 1 resonant magnetic perturbation in HL-2A
 - Tengfei Sun et al. Nuclear Fusion, 2021, 61(3):0360,

Multiple Technical Presentations Enabled Through Diagnostic Collaboration

Development of Beam Emission Spectroscopy on HL-2A

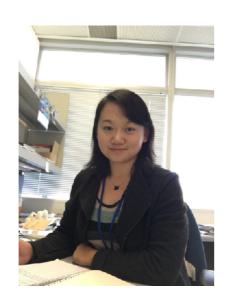
 Y. Wu, R. Ke, M. Xu, G. McKee, Z. Yan et al., High Temperature Plasma Diagnostics Conference, San Diego, CA (2018)

Integrated 2D BES for the HL-2A/2M Tokamaks

 Z. Yan, K. Jaehnig, G. McKee et al., High Temperature Plasma Diagnostics Conference, San Diego, CA (2018)

• Measuring Turbulence Characteristics on ρ^* in HL-2A

 X. Qin, G. McKee, R. Ke, L. Morton, R. Fonck Z. Yan, M. Xu, T. Wu, American Physical Society-Div. of Plasma Phys., Fort Lauderdale, FL (2019)

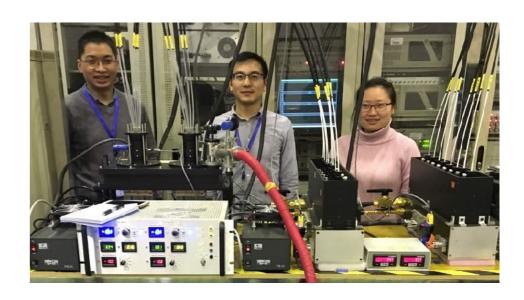

SWIP Scientific Seminars

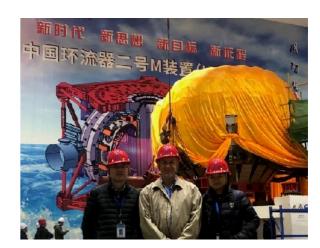
- Impact of Fuel Ion Isotope Mass on Confinement, Turbulence and the L-H Transition in DIII-D*, G. McKee, December, 2019
- Bursty Wiggles: A Pedestal-to-SOL Transport Mechanism During RMP-ELM Suppression, G. McKee, June 2018
- Turbulence and Transport Response to 3D Resonant Magnetic Perturbations in ELM-Suppressed Plasmas, G. McKee, November, 2016
- Turbulence and sheared flow structures behind the isotopic dependence of the L-H power threshold, Z. Yan, December, 2017

UW and SWIP Colleagues Participate Actively in Collaboration

G. McKee, UW Senior Scientist

Z. Yan, UW Assoc. Scientist


B. Geiger, UW Assistant Professor


X. Qin, UW Graduate Student

- Joint HL-2A & DIII-D
- Role of Turbulence in
- Driving Intrinsic Rotation

Rui Ke (SWIP) Yifan Wu (USTC) Ting Wu (SWIP

Min Xu (SWIP)

Instrumentation Specialist

K. Jaehnig, UW

Future Activities for UW-SWIP Collaboration

Develop and deploy Phase 3 BES diagnostic on HL-2A

 64-channel integrated imaging BES diagnostic for wide-field turbulence and flow measurement and analysis (complement existing 32-channel capability from Phases 1 & 2 development)

Evaluate HL-2M designs options for implementation

- Detector systems can be deployed to HL-2M
- Requires new optical design to view neutral beam and fiber array

Consider complementary turbulence diagnostic systems

- **UF-CHERS**: T_i and V_{TOR} measurement
- CXI: high-spatial resolution pedestal fluctuation measurements
- Lyman-alpha BES: high SNR, high spatial resolution; challenging engineering
- Spatial Heterodyne Spectroscopy (SHS): magnetic and electric field fluctuations

Turbulence and Transport Research

- Intrinsic Rotation and the Role of Turbulence (X. Qin, UW student) on HL-2A
- Core transport, L-H physics, RMP, LHCD/ECH impacts, EP-xAE
- US and China fusion programs are benefitting from joint diagnostic development and research projects: HL-2A, HL-2M, DIII-D, NSTX-U

