

Progress of J-TEXT on RMP and Disruption Physics

Ping Zhu^{1,2}, on behalf of J-TEXT Team

¹ Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

²University of Wisconsin-Madison, Madison, WI 53706, USA

I. J-TEXT overview

II. RMP and disruption mitigationIII. Runaway electron controlIV. Summary and future work

J-TEXT status in magnetic fusion program

Recent J-TEXT system upgrade

- 30+ diagnostic systems, including first polarimeter for tokamak in China
- First high frequency DRMP system and dual SPI system in China
- ECRH system and midplane divertor

Toroidal arrangement : flux loops , 2D Mirrov Pick-up coils ——Blue developing

ECRH system parameters on J-TEXT: 105GHz/500kW/1s Enhanced J-TEXT plasma performance (Te > 1.5keV) To conduct localized heating and ECCD experiments on J-TEXT

J-TEXT high-field-side divertor configuration

- > Successful discharges in HFS single-null and double-null divertor configurations
- Extended operation space of J-TEXT

Major US collaborators: UT Austin

Development of the first digital control ECEI system

- ➤ A new 256-channel ECEI system has been developed on J-TEXT tokamak.
- > It is the **first full-function digital control** ECEI system which can remotely set

and control the diagnostic.

Simplified schematic of J-TEXT ECEI system
Major US collaborators: UC Davis
Major US collaborators: UC Davis
Yang, Z.J., et al., FED, 2020. 153,111494.
Xie, X.L., et al., FED, 2020. 155,111636.

華中科技大学 HUNZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Dual SPI system installed on J-TEXT

SPI disruption mitigation: Collaboration with GA in the frame of ITPA MHD task force

J-TEXT focuses on key ITER physics areas

Ensuring the success of ITER

- <u>TBM effects</u>
- ELM control
- Disruption mitigation
- Runaway electron control
- Non-activated operation
- Hydrogenic inventory control
- Scenario demonstration discharges
- Neoclassical tearing modes
- Divertor heat transport
- Startup and rampdown

J-TEXT focus areas: MHD instability control Disruption avoidance RE suppression & dissipation

Neural network developed for disruption prediction

Hybrid neural network for density limit disruptions prediction and avoidance

Zheng W, et al., Nuclear Fusion, 58 (2018) 056016

DRMP TM control avoids disruption onset

Rotating RMP unlocks TM and drives island rotation

Jin H, PPCF 2015, Wang N, NF 2019

Rotating RMP accelerates rotation and avoids disruption

Ding Y H, IAEA FEC 2018

DRMP regime optimized for disruption control

RMP applying moment 35 30 1 kHz 2 kHz 2 kHz 2 kHz 2 kHz 3 kHz 2 kHz 3 kHz 2 kHz 3 kHz 1 kHz 2 kHz 2 kHz 3 kHz 3 kHz 1 kHz 2 kHz 3 kHz 3 kHz 1 kHz 3 kHz 1 kHz 3 kHz 1 kHz 3 kHz 1 kHz 1 kHz 1 kHz 2 kHz 3 kHz 1 kHz 1 kHz 3 kHz 1 kHz 1 kHz 1 kHz 2 kHz 1 kHz1 kHz

> Higher frequency rotating RMP more effective on suppressing LM amplitude

Nonlinear RMP effects on q profile allow disruption avoidance Li D, NF 2020

Effects of 2/2 RMP on sawteeth

New scheme for sawteeth control using RMPs with m/n = 1 but m, n > 1

Novel schemes developed for RE control **[FPP**

Ensuring the success of ITER

- <u>TBM effects</u>
- ELM control
- Disruption mitigation
- Runaway electron control
- Non-activated operation
- Hydrogenic inventory control
- Scenario demonstration discharges
- Neoclassical tearing modes
- Divertor heat transport
- Startup and rampdown

Disruption mitigation: RMP and electrode biasing control LM and avoid disruption onset

Schemes-I: RE suppression (RMP)

- **3 RE control regimes found on J-TEXT:**
- **1. Partial suppression**
- 2. Enhanced RE
- 3. Full suppression by (a) Mode locking; (b) RMP penetration

Full RE suppression achieved via RMP mode locking & penetration

Major US collaborators: NIMROD team (US)

16/25

Schemes-I: RE suppression (SMBI)

Developed novel RE suppression scheme based on SMBI induced magnetic perturbations. Combined MGI+SMBI scheme enhances magnetic perturbations during disruption and

enable RE suppression.

Volume 59 Number 8 Augus	st 2017

Plasma Phys. Control. Fusion 59 (2017) 085002 Nucl. Fusion 60, 066004 (2020)

Minor disruptions triggered by supersonic molecular beam injection (SMBI) on J-TEXT tokamak

- The core plasma temperature decreases to less than tens of eVs after a relatively long period of multistage thermal collapse.
- Different MHD modes appear as impurity cold front propagates toward the q = 2 surface.
- Major US collaborators: NIMROD team (US)

Schemes-I: RE suppression (ETC-Energy Transfer Coil)

Novel ETC system provides a new scheme for disruption mitigation

ETC can effectively reduce loop voltage during disruption, thus enable RE suppression.

10th US-PRC Magnetic Fusion Confinement Workshop, LLNL, March 23-26, 2

0.415

Schemes-II: RE dissipation (MGI) -ITPA

ITPA WG11: Control of Locked Modes

ITPA MDC-19 Error Field Correction for ITER

> Dissipation rate ~ 26MA/s, highest so far in world;

Dissipation rate saturation found and confirmed on DIII-D

Schemes-II: RE dissipation (SPI) -ITPA

Radiation asymmetry reduced by dual SPIs **[FPP**

- In single SPI, there is a strong radiation asymmetry. The radiation in Port 13, which is closed to the injection port, is much stronger than that in Port 5 and 6.
- The localized thermal radiation is reduced by dual SPIs.

The thermal radiation in TQ phase, (a) single Ne SPI; (b) dual SPIs

Schemes-II: RE dissipation (E field reversal – soft landing)

Active RE current control
extends plateau duration to 30 80ms.

> Electric field reversal dissipates RE current (-4MA/s), leads to soft-landing.

Critical electric fields for zero RE current growth rate, where measured value 6 times of theory prediction.

Dai A. J. et al., Plasma Phys. Control. Fusion 60 (2018) 055003

Summary and future work

J-TEXT has made major progresses on

- RMP-aided disruption mitigation
- Runaway electron current suppression and dissipation

Future work continues ITER-relevant physics on:

- 3D configuration optimization for disruption and thermal transport control
- Novel divertor design study for fusion reactor

2021-23 J-TEXT-US MFC collaboration plan

J-TEXT	PRC > US	US > PRC
UT-Austin	High-field side diverter operation and control	Study impurity transport in presence of RMP; ECE upgrade and CECE development
UC-Davis		High resolution visualization diagnostic; Smart feedback control development for diagnostics; Joint experiment for plasma disruption avoidance
General Atomics	Study of dual SPI on radiation and electron density asymmetry during fast shutdown	
UC-San Diego	Mean field model of the L \rightarrow H transition in a stochastic magnetic field	
UW-Madison	MHD theory and simulation for: tokamak plasmas in Q>5 and B>10T regimes; FRC and stellarator plasmas	Disruption physics collaboration
25/25	10th US-PRC Magnetic Fusion Confinement Worksho	p, LLNL, March 23-26, 2021 () 華中科技大学