Lawrence Livermore National Laboratory



Rajesh Raman

Research Staff
Materials Science Division


 +1 925-423-2050


DegreeDiscipline/InstitutionYear
Ph.D. Engineering, Applied Science
University of California at Davis
2008
M.S. Engineering, Applied Science
University of California at Davis
2005
B.A. Physics
University of California at Berkeley
2000

Research Interests

The physical mechanisms of energy deposition by high average power lasers in optical materials and subsequent material response. The development of non-destructive diagnostic methods to identify laser-induced damage precursors in optical materials and monitor the effectiveness of damage prevention, repair, and containment strategies. The use of optical spectroscopy for noninvasive in vivo identification, characterization, and monitoring of the treatment of pathological or injured tissue.


Honors/Awards

  • International Congress of the Transplantation Society Travel Award, July 2008
  • Graduate Student Fellow, NSF Center for Biophotonics Science and Technology, July 2004-December 2008

Membership

The International Society for Optical Engineering (SPIE)

Selected Publications

R.N. Raman, R.A. Negres, and S.G. Demos, "Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example." Opt Engr, submitted.

R.N. Raman, M.J. Matthews, J. J. Adams, and S.G. Demos, "Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy." Opt Lett, submitted.

R.N. Raman, C.D. Pivetti, A.M. Rubenchik, D.L. Matthews, C. Troppmann, and S.G. Demos, "Evaluation of the contribution of the renal capsule and cortex to kidney autofluorescence intensity under ultraviolet excitation," J Biomed Opt 14, 020505 (2009).

R.N. Raman, C.D. Pivetti, D.L. Matthews, C. Troppmann, and S.G. Demos, "A non-contact method and instrumentation to monitor renal ischemia and reperfusion with optical spectroscopy," Opt Express 17, 894-905 (2009).

R.N. Raman, C.D. Pivetti, D.L. Matthews, C. Troppmann, and S.G. Demos, "Quantification of in vivo autofluorescence dynamics during renal ischemia and reperfusion under 355 nm excitation," Opt Express 16, 4930-4944 (2008).

J.T. Fitzgerald, A. Michalopoulou, C.D. Pivetti, R.N. Raman, C. Troppmann, and S.G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluoresence imaging," J Biomed Opt 10, 044018 (2005).


Last update: