Lawrence Livermore National Laboratory

Patrick Campbell

Research Staff
Advanced Materials Synthesis Group
Materials Science Division

 +1 925-423-6935

Ph.D. Synthetic Organic/Inorganic Chemistry
University of Oregon, Eugene
B.S. Chemistry
Macalester College

Research Interests

  • Application of flow-through electrode capacitive deionization (fte-CDI) for desalination and selective ion removal from water
  • Developing dual-phase (liquid/solid) membranes for gas separations and fuel cells
  • Synthesis and characterization of new carbon materials for energy storage
  • Fundamental chemistry and energy storage applications of boron-nitrogen materials


Google Scholar:

  1. Cerón, M. R.; Lai, L. S.; Amiri, A.; Monte, M.; Katta, S.; Kelly, J.; Worsley, M. A.; Merrill, M. D.; Kim, S.; and Campbell, P. G. “Surpassing the Conventional Limitations of CO2 Separation Membranes with Hydroxide/Ceramic Dual-Phase Membranes,” Journal of Membrane Science 2018, manuscript accepted.
  2. Zhan, Cheng; Pham, Tuan Anh; Ceron Hernandez, Maira Raquel; Campbell, Patrick; Vedharathinam, Vedasri; Otani, Minoru; Jiang, De-en; Biener, Juergen; Wood, Brandon; and Biener, Monika. “Atomistic Origins of High Performance of C60 Functionalized Graphene Supercapacitors,” ACS Applied Materials & Interfaces (2018), manuscript submitted.
  3. Hawks, S. A.; Ramachandran, A.; Campbell, P. G.; Suss, M. E.; Biesheuvel, P. M.; Santiago, J. G.; and Stadermann, M. “Performance Metrics for the Objective Assessment of Capacitive Deionization Systems,” Energy Environ. Sci. (2018), under review.
  4. Hensleigh, Ryan; Cui, Huachen; Oakdale, James; Ye, Jianchao; Campbell, Patrick; Duoss, Eric; Spadaccini, Christopher; Zheng, Xiaoyu; and Worsley, Marcus “Additive Manufacturing of Complex Micro-architected Graphene Aerogels,” Material Horizons (2018), Advance Article, doi:10.1039/C8MH00668G.
  1. Kudo, A; Campbell P. G.; and Biener, J. “Nanographene Aerogels: Size Effect of the Precursor Graphene Oxide on Gelation Process and Electrochemical Properties,” ChemNanoMat 4, 338–342 (2018).doi:10.1002/cnma.201700292.
  2. Chandrasekaran, S.; Campbell, P.; Baumann, T.; and Worsley, M. “Carbon Aerogel Evolution: Allotrope, Graphene-Inspired, and 3D-Printed Aerogels,” Journal of Materials Research 32, 4166–4185 (2017). doi:10.1557/jmr.2017.411.
  3. Hawks, S. A.; Knipe, J. M.; Campbell, P. G.; Loeb, C. K.; Hubert, M. A.; Santiago, J. G.; and Stadermann, M. “Quantifying the Flow Efficiency in Constant-Current Capacitive Deionization,” Water Research 129, 327–336 (2018).
  4. Qu, Y.; Campbell, P. G.; Hemmatifar, A.; Knipe, J. M.; Loeb, C. K.; Reidy, J. J.; Hubert, M. A.; Stadermann, M.; and Santiago, J. G. “Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System,” J. Phys. Chem. B. 122,240–249 (2018).
  5. McConnell, C. R.; Campbell, P. G.; Fristoe, C. R.; Memmel, P.; Zakarhov, L. N.; Li, B.; Dargelos, A.; Chrostowska, A.; and Liu, S.-Y. “Synthesis and Characterization of 1,2-Azaborine-Containing Phosphine Ligands: A Comparative Electronic Structure Analysis,” Eur. J. Inorg. Chem. 2207–2210 (2017). doi:10.1002/ejic.201700242.
  6. Qu, Y.; Campbell, P. G.; Gu, L.; Knipe, J. M.; Dzenitis, E; Santiago, J. G.; and Stadermann, M.Energy consumption analysis of constant voltage and constant current operations in capacitive deionization,” Desalination 400, 18–24 (2016). doi:10.1016/j.desal.2016.09.014.
  7. Reyes, S.; Anklam, T.; Meier, W.; Campbell, P.; Babineau, D.; Becnel, J.; Taylor, C.; and Coons, J. “Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities,” Journal of Fusion Engineering and Design (2016). doi:10.1016/j.fusengdes.2016.03.034.
  8. Ye, J. C.; An, Y.; Montalvo, E.; Campbell, P. G.; Worsley, M. A.; Tran, I. C.; Liu, Y.; Wood, B. C.; Biener, J.; Jiang, H.; Tang, M.; and Wang, Y. M. “Solvent-directed Solgel Assembly of 3-dimensional Graphene-tented Metal Oxides and Strong Synergistic Disparities in Lithium Storage,” J. Mater. Chem. A 4, 4032–4043 (2016). doi:10.1039/C5TA10730J.
  9. Ye, J. C.; Ong, M. T.; Heo, T. W., Campbell, P. G.; Worsley, M. A.; Liu, Y. Charnvanichborikarn, S.; Matthews, M. J.; Lewicki, J.; Bagge-Hansen, M. Lee, J. R. I.; Wood, B. C.; and Wang, Y. M. “Universal roles of hydrogen in electrochemical performance of graphene: high rate capacity and atomistic origins,” Sci. Rep. 5, 16190 (2015). doi:10.1038/srep16190.
  10. Campbell, P. G.; Worsley, M. A.; Baumann, T. F.; and Biener, J. “Synthesis and Functionalization of 3D Nano-Graphene Materials: Graphene Aerogels and Graphene Macro Assemblies,” J. Vis. Exp. e53235 (2015). doi:10.3791/53235.
    * Invited contribution
  11. Lenhardt, J. M.; Kim, S. H.; Worsley, M. A.; Leif, R. N.; Campbell, P. G.; Baumann, T. F.; and Satcher, J. H. Jr. “ROMP crosslinkers for the preparation of aliphatic aerogels,” J. Non-Crystalline Solids 408, 98–101 (2015).
  12. Campbell, P. G.; Merrill, M. D.; Wood, B. C.; Montalvo, E.; Worsley, M. A.; Baumann, T. F.; and Biener, J. “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A 2, 17764–17770 (2014).
    * 2014 Journal of Materials Chemistry A “Hot Article”
  13. Merrill, M. D.; Montalvo, E.; Campbell, P. G.; Wang, Y. M.; Stadermann, M.; Baumann, T. F.; Biener, J.; and Worsley, M. A. “Optimizing supercapacitor electrode density: achieving the energy of organic electrolytes with the power of aqueous electrolytes,” RSC Adv. 4,42942–42946 (2014).
  14. Campbell, P. G.; Ishibashi, J. S. A.; Zakharov, L. N.; and Liu, S.-Y. “B-Methyl Amine Borane Derivatives: Synthesis, Characterization and Hydrogen Release,” Aust. J. Chem. 67, 521–524 (2014).
  15. Campbell, P. G.; Marwitz, A. J. V.; and Liu, S.-Y. “Recent Advances in Azaborine Chemistry,” Angew. Chem. Int. Ed. 51, 6074–6092 (2012).
  16. Luo, W.; Campbell, P. G.; Zakharov, L. N.; and Liu, S.-Y. “A Single-Component Liquid-Phase Hydrogen Storage Material” J. Am. Chem. Soc. 133, 19326–19329 (2011).
  17. Campbell, P. G.; Abbey, E. R.; Neiner, D.; Grant, D. J.; Dixon, D. A.; and Liu, S.-Y. “Resonance Stabilization Energy of 1,2-Azaborines: A Quantitative Experimental Study by Reaction Calorimetry,” J. Am. Chem. Soc. 132, 18048–18050 (2010).
  18. Campbell, P. G.; Zakharov, L. N.; Grant, D. J.; Dixon, D. A.; and Liu, S.-Y. “Hydrogen Storage by Boron-Nitrogen Heterocycles: A Simple Route for Spent Fuel Regeneration,” J. Am. Chem. Soc. 132, 3289–3291 (2010).

Last update: