Lawrence Livermore National Laboratory



Mark Zelinka

Research Scientist
Atmospheric, Earth and Energy Division



DegreeDiscipline/InstitutionYear
Ph.D. Atmospheric Sciences
University of Washington, Seattle, WA
2010
M.Sc. Atmospheric Sciences
University of Washington, Seattle, WA
2007
B.S. Meteorology
Pennsylvania State University, University Park, PA
2004

Research Interests

I study the Earth's energy budget, specifically the role of clouds in reflecting solar radiation incident on the planet (a cooling effect) and in reducing the infrared radiation emitted by the planet (a heating effect). I am particularly interested in how cloud properties change as the planet warms due to greenhouse gases, and whether clouds act as positive feedbacks that amplify warming, or negative feedbacks that diminish warming. To investigate these processes, I use theory, observations, and global climate models.

Honors and Awards

  • LLNL Spot Award for “Excellence in Publications” (2017)
  • LLNL Physical and Life Sciences Directorate Award for Excellence in Publication for Zhou et al. (2016)
  • LLNL Physical and Life Sciences Directorate Award for Excellence in Publication for Norris et al. (2016)
  • Nature Climate Change Research Highlight for Zhou et al. (2016)
  • Eos Research Spotlight for Zelinka et al. (2016)
  • 2016 LLNL Deputy Director for Science and Technology Excellence in Publication Award for Santer et al. (2015)
  • EOS Research Spotlight for McCoy et al. (2016)
  • Recipient, LLNL SPOT Award for "Outstanding Contributions to Climate Science", 2015
  • Award recipient, NASA New Investigator Program in Earth Science, 2013
  • Editors' Citation for Excellence in Refereeing for J. of Geophys. Res., 2012
  • AGU Journal Highlight for manuscript "Why is Longwave Cloud Feedback Positive?" 2010

Selected (Recent) Publications

Bonfils, C., G. Anderson, B. D. Santer, T. J. Phillips, K. Taylor, M. Cuntz, M. D. Zelinka, K. Marvel, B. I. Cook, I. Cvijanovic, and P. Durack, 2017: Competing influences of anthropogenic warming, ENSO, and plant physiology on future terrestrial aridity, J. Climate, doi: 10.1175/JCLI-D-17-0005.1, in press.

Ceppi, P., F. Brient, M. D. Zelinka, and D. L. Hartmann, 2017: Cloud feedback mechanisms and their representation in global climate models, WIREs Climate Change, e465, doi:10.1002/wcc.465.

Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the Earth’s energy budget, Nature Geoscience, 9, 871–874, doi:10.1038/ngeo2828.

Zelinka, M. D., C. Zhou, and S. A. Klein, 2016: Insights from a Refined Decomposition of Cloud Feedbacks, Geophys. Res. Lett., 43, 9259–9269, doi:10.1002/2016GL069917.

Terai, C., S. A. Klein, and M. D. Zelinka, 2016: Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations, J. Geophys. Res., 121, 9696–9716, doi:10.1002/2016JD025233.

Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for Climate Change in the Satellite Cloud Record, Nature, 536, 72-75, doi:10.1038/nature18273.

McCoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, T. Storelvmo, 2016: On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs, J. Adv. Model. Earth Syst., 8, 650–668, doi: 10.1002/2015MS000589.

Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity, Science, 352, 6282, 224-227, doi: 10.1126/science.aad5300.

Yuan, T., L. Oreopoulos, M. D. Zelinka, H. Yu, J. Norris, M. Chin, S. Platnick, and K. Meyer, 2016: Positive low cloud and dust feedbacks amplify tropical North Atlantic multidecadal oscillation, Geophys. Res. Lett., 43, doi: 10.1002/2016GL067679.

Caldwell, P. M., M. D. Zelinka, K. E. Taylor, and K. Marvel, 2016: Quantifying the Sources of Inter-Model Spread in Equilibrium Climate Sensitivity, J. Climate, 29, 513–524, doi: 10.1175/JCLI-D-15-0352.1.

Santer, B. D., S. Solomon, D. Ridley, J. Fyfe, F. Beltran, C. Bonfils, J. Painter, and M. D. Zelinka, 2015: Volcanic effects on climate, Nature Clim. Change, 6, 3-4, doi: 10.1038/nclimate2859.

Zhou, C., M. D. Zelinka, A. E. Dessler, S. A. Klein, 2015, The relationship between inter-annual and long-term cloud feedbacks, Geophys. Res. Lett., 42, doi: 10.1002/2015GL066698.

DeAngelis, A. M., X. Qu, M. D. Zelinka, and A. Hall, 2015: An observational radiative constraint on hydrologic cycle intensification, Nature, 528, 249-253, doi: 10.1038/nature15770.

McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi and D. P. Grosvenor, 2015: Mixed-phase cloud physics and midlatitude cloud feedback in climate models, J. Geophys. Res., 120, 9539-9554, doi: 10.1002/2015JD023603.

K. Marvel, M. D. Zelinka, S. A. Klein, C. Bonfils, P. M. Caldwell, C. Doutriaux, B. D. Santer, and K. E. Taylor, 2014: External influences on modeled and observed cloud trends, J. Climate, 28, 4820-4840, doi: 10.1175/JCLI-D-14-00734.1.

Santer, B. D., S. Solomon, C. Bonfils, M. D. Zelinka, J. F. Painter, F. Beltran, J. C. Fyfe, G. Johannesson, C. Mears, D. A. Ridley, J.-P. Vernier, and F. J. Wentz, 2015: Observed multi-variable signals of late 20th and early 21st century volcanic activity, Geophys. Res. Lett., 42, doi: 10.1002/2014GL062366.

Zhou, C., A. E. Dessler, M. D. Zelinka, P. Yang, and T. Wang, 2014: Cirrus feedback on inter-annual climate fluctuations, Geophys. Res. Lett., 41, doi: 10.1002/2014GL062095.

Johnston, M. S., S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen, and M. D. Zelinka, 2014: Diagnosing the average spatio-temporal impact of convective systems – Part 2: A model intercomparison using satellite data, Atmos. Chem. Phys., 14, 8701-8721, doi: 10.5194/acp-14-8701-2014.

Zelinka, M. D., T. Andrews, P. M. Forster, and K. E. Taylor, 2014: Quantifying Components of Aerosol-Cloud-Radiation Interactions in Climate Models, J. Geophys. Res., 119, 7599-7615, doi: 10.1002/2014JD021710.

Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The Response of the Southern Hemispheric Eddy-Driven Jet to Future Changes in Shortwave Radiation in CMIP5, Geophys. Res. Lett., 41, 3244-3250, doi: 10.1002/2014GL060043.

Caldwell, P. M., C. S. Bretherton, M. D. Zelinka, S. A. Klein, B. D. Santer, and B. M. Sanderson, 2014: Statistical Significance of Climate Sensitivity Predictors Obtained by Data Mining, Geophys. Res. Lett., 41, 1803–1808, doi: 10.1002/2014GL059205.

Santer, B. D., C. Bonfils, J. F. Painter, M. D. Zelinka, C. Mears, S. Solomon, G. A. Schmidt, J. C. Fyfe, J. N. S. Cole, L. Nazarenko, K. E. Taylor, and F. J. Wentz, 2014: Volcanic Contribution to Decadal Changes in Tropospheric Temperature, Nature Geoscience, doi: 10.1038/ngeo2098.

Johnston, M. S., S. Eliasson, P. Eriksson, R. M. Forbes, K. Wyser, and M. D. Zelinka, 2013: Diagnosing the average spatio-temporal impact of convective systems – Part 1: A methodology for evaluating climate models, Atmos. Chem. Phys., 13, 12043-12058, doi: 10.5194/acp-13-12043-2013.

Zelinka, M.D., S.A. Klein, K.E. Taylor, T. Andrews, M.J. Webb, J.M. Gregory, and P.M. Forster, 2013: Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5. J. Climate, 26, 5007–5027. doi: 10.1175/JCLI-D-12-00555.1.

Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels. J. Climate, 25, 3715–3735. doi:10.1175/JCLI-D-11-00248.1.

Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth. J. Climate, 25, 3736–3754. doi:10.1175/JCLI-D-11-00249.1.

Zelinka, M.D. and D.L. Hartmann, 2012: Climate Feedbacks and their Implications for Poleward Energy Flux Changes in a Warming Climate. J. Climate, 25, 608-624, doi:10.1175/JCLI-D-11-00096.1.

Zelinka, M.D. and D.L. Hartmann, 2011: The Observed Sensitivity of High Clouds to Mean Surface Temperature Anomalies in the Tropics. J. Geophys. Res., 116, D23103, doi:10.1029/2011JD016459.

Zelinka, M.D. and D.L. Hartmann, 2010: Why is Longwave Cloud Feedback Positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

Zelinka, M.D. and D.L. Hartmann, 2009: Response of Humidity and Clouds to Tropical Deep Convection. J. Climate, 22, 2389-2404. doi:10.1175/2008JCLI2452.1.


Last update: